
Research statement
Tej Chajed

December 2021

Systems software is a critical fabric for modern technology.
Bugs in systems software can have serious consequences,
ranging from security vulnerabilities, to data loss, to interrup-
tion of services that millions of users rely on. Practitioners
recognize the importance of this core software and put enor-
mous e�ort into testing and fuzzing to improve reliability —
as one famous example, sqlite3 has 600 times as much test
code as library code — yet despite this e�ort, bugs are still
found in infrastructure like �le systems, key-value stores,
databases, and browsers.
Formal veri�cation is a promising and systematic ap-

proach to write correct systems, which has recently been
successfully applied to many systems. A veri�ed system is
developed by writing an implementation along with a proof
that the code always meets a speci�cation of desired
behavior. The proof is itself written in a computer, checked
mechanically in a process similar to compilation, and devel-
oped with a process analogous to software development.

A central challenge in systems veri�cation is going from
theoretical foundations, which demonstrate how to reason
about small programs, to approaches that can handle real
implementations. My research covers a wide range of the
software veri�cation stack to bridge the gap, including de�n-
ing speci�cations, developing new veri�cation techniques,
and proposing new veri�cation-friendly systems designs. I’m
interested in designing and verifying practical systems, in-
cluding ones that have good performance and handle crashes.

1 Verifying a concurrent, crash-safe
�le system with sequential reason-
ing

My PhD work has focused on the domain of verifying �le sys-
tems. Since the �le system stores all the persistent data, bugs
can cause permanent data loss and correctness is especially
important. What makes it hard to implement a �le system
correctly is that a �le system should tolerate crashes (where
the system reboots unexpectedly) and concurrency between
multiple applications and the disk, all while aiming for good
performance. Verifying a �le system is di�cult because in the
pursuit of performance �le-system implementations simulta-
neously carry out in-memory and I/O processing for multiple
operations, and the proof must cover all the interleaving
executions of the code.

My main line of research developed and veri�ed DaisyNFS,
an implementation of the Network File System (NFS) protocol
that has a concurrent implementation, guarantees operations

are atomic and durable even if the system crashes, and gets
performance comparable to that of Linux. Most �le systems
contend with concurrency throughout the entire implementa-
tion. DaisyNFS instead uses a transaction system that isolates
the crash safety and concurrency reasoning so that the bulk
of the code is veri�ed using easily automated sequential rea-
soning. The tools and techniques for reasoning about crashes
and concurrency in a high-performance system didn’t exist in
2015 when I started working on this problem; the transaction
system that enables DaisyNFS to get good performance is
built on new veri�cation infrastructure that made it possible
to reason about a concurrent storage system.

A core challenge in verifying a �le system is proving that
the system correctly recovers following a crash and reboot at
any time. Crash Hoare Logic (CHL) [2] is an extension of
Hoare logic that introduces the idea of a crash condition, an
invariant that a particular function maintains at all interme-
diate points. Crash conditions strengthen the speci�cations
of Hoare logic and enable reasoning about crashes, recovery,
and even repeated crashes during recovery. CHL is the basis
for FSCQ, the �rst veri�ed �le system; I joined Haogang
Chen in this e�ort and contributed to the core theory. The
ideas of Crash Hoare Logic were important in most of my
subsequent research even as we improved performance and
introduced concurrency.

While Crash Hoare Logic can reason about a single recov-
ery procedure, a realistic storage system would have recovery
at multiple abstraction levels — for example an application
might need to restore its state after the �le system recov-
ers. I led the development of Argosy, the �rst veri�cation
framework with reasoning about nested recovery pro-
cedures [6]. Crashes during recovery are tricky when they
interrupt application recovery because the system has to start
over with �le-system recovery, but Argosy proves that if each
recovery procedure is independently veri�ed the two together
are also correct.

Realistic storage systems have concurrent implementa-
tions, which poses a particular challenge for veri�cation
because the proof must reason about thread interleavings
combined with a crash at any time. My co-authors and I de-
veloped Perennial, the �rst framework for mechanized
proofs for concurrent programs that supports reason-
ing about crashes [7, 9]. Perennial draws from Crash Hoare
Logic’s basic idea of a crash obligation and integrates this idea
into Iris [4], a framework for reasoning about concurrency
using separation logic.

Perennial consists of a program logic, which organizes a
system’s proof into speci�cations for individual functions,

1



and a set of techniques for formalizing the behavior of con-
current storage systems and their internal layers. The most
basic idea is to re-use invariants from Iris. An invariant is a
property which, once established, the proof system guaran-
tees is maintained by all threads. Perennial turns invariants
into a crash reasoning principle, exploiting the fact that if the
system crashes the recovery thread can rely on any invari-
ants to hold. Perennial develops several fundamental ideas to
integrate crash safety into concurrency reasoning: local crash
obligations as in Crash Hoare Logic, logically-atomic crash
speci�cations that made it possible to verify a storage system
in several layers, and a new separation logic primitive called a
crash borrow for reasoning about ownership of durable state.

Systems veri�cation needs to connect proofs to some imple-
mentation, and we want to verify code written in a systems
programming language. Writing code at the right level of ab-
straction is especially important for Perennial’s concurrency
reasoning to be useful, since the performance bene�ts of con-
currency would be moot if the single-threaded performance
of the system were too poor. We developed Goose, a tool for
reasoning about Go code using Perennial [8]. Goose mod-
els a subset of Go suitable for building veri�ed systems, and
gives speci�cations for reasoning about Go primitives like
structs, locks, slices, and maps. This approach was essential
to getting good performance: Go is a systems programming
language with good support for concurrency and a productive
basis to build veri�ed software.

As the foundation for DaisyNFS, we implemented and ver-
i�ed a journaling system called GoJournal [9]. Many �le sys-
tems use journaling, which allows the rest of the �le system
to safely update multiple pieces of metadata atomically. How-
ever, veri�ed journaling poses a speci�cation challenge since
while GoJournal makes writes atomic, it requires the caller to
use appropriate concurrency control to guarantee operations
do not con�ict. GoJournal introduces a separation-logic
speci�cation for a journaling system. Perennial’s crash
speci�cations and concurrent separation logic allow the spec-
i�cation to capture both the concurrency requirements and
crash-safety guarantees of the journal.

A proof based on Perennial ties the GoJournal speci�ca-
tion to an e�cient implementation that uses multiple cores,
merges concurrent operations, and issues all disk I/O with-
out holding any locks for CPU-disk concurrency. Perennial’s
features were essential not only to specify GoJournal as a
whole but also to divide the proof into several layers, each
veri�ed against the previous. Modularity was essential since
GoJournal is designed for performance and concurrency over
veri�cation convenience.

A veri�ed �le system requires a good deal of code on top
of the journal to implement its data structures and the logic
for each operation, all of which requires proof. While GoJour-
nal simpli�es the crash safety aspect of verifying this code,
concurrency remains a challenge. DaisyNFS thus develops a
design where each operation runs within a transaction: this

results in sequential reasoning for the �le-system logic, and
the transactional API is e�ciently implemented in GoTxn,
which layers two-phase locking on top of GoJournal. The
DaisyNFS design is itself unusual for the reliance on trans-
actions. In GoTxn we formalized a program re�nement spec-
i�cation that formally captures the idea that arbitrary
transactions appear to execute atomically both to con-
current transactions and after a crash and reboot. The
proof that GoTxn meets this speci�cation uses the �exibility
of Perennial’s program logic to implement a logical relations
proof strategy adapted for crash and recovery reasoning.

Because GoTxn enables sequential reasoning for the body
of each transaction, we were able to write and verify that
logic using Dafny, a sequential veri�cation-oriented program-
ming language. As one measure of the reduced proof burden
from using Dafny’s sequential reasoning, DaisyNFS’s Dafny
proof has just a 2:1 proof-to-code ratio compared with the
GoTxn veri�cation which is closer to 20:1. Dafny helped us
implement and verify the DaisyNFS �le system with a wide
range of features and good performance. Across a range of
benchmarks running on a fast NVMe disk, DaisyNFS gets
comparable performance to Linux NFS exporting an
ext4 �le system.

Overall, my research includes the following intellectual
contributions:
• CHL introduces the idea of crash conditions as a way of

structuring speci�cations about crash behavior.
• Argosy introduces recovery re�nement to specify an ab-

straction with its crash and recovery behavior. The main
theorem is that recovery re�nements compose as desired.

• Perennial introduces crash weakest preconditions (a con-
current extension of crash conditions), a principle for re-
purposing invariants for crash reasoning, principles for
ownership of durable state that transfers to recovery, and
a speci�cation style for concurrent storage abstractions.

• Goose takes a useful subset of Go for concurrent systems
and presents the user with speci�cations and theorems for
reasoning about code written in that subset using Peren-
nial.

• GoJournal’s speci�cation captures the mix of crash atom-
icity guarantees and concurrency requirements in a high-
performance journaling system.

• GoTxn’s speci�cation formalizes the intuition that a trans-
action system makes code appear sequential.

• DaisyNFS includes a veri�cation-friendly design that uses
GoTxn’s transactional API to make most �le-system rea-
soning sequential.

Impact. Perennial has seen some direct adoption from
groups at Aarhus University and MPI-SWS, who are using it
as the basis for program logics for non-volatile RAM. This
research requires extending Perennial to handle reasoning

2



about weak memory behaviors but leverages all of its mech-
anisms for reasoning about the persistent memory across
crashes and reboots.

Perennial and Goose are also the basis for a new research
project at MIT on reasoning about distributed systems. Goose
is used to tie this reasoning to e�cient implementations,
while Perennial is being extended to reason about concur-
rency between both machines and threads.

FSCQ [2] was the �rst veri�ed �le system; since then, sev-
eral other groups have created veri�ed �le systems that go
beyond FSCQ, including Yggdrasil, AtomFS, and VeriBetrFS.
The �rst version of Perennial [7] describes how to encode
re�nement reasoning into separation logic, including with
crash reasoning. Researchers at VMWare Research and CMU
are working on incorporating these reasoning principles into
Dafny. Perennial has also in�uenced practitioners at Amazon,
who are interested in formal reasoning in the development of
the next generation of ShardStore, a key-value storage system
in Amazon S3.

2 Combining systems design and
veri�cation

My work involves both systems and veri�cation thinking,
each of which informs the other. When going from systems
to veri�cation, this means taking existing designs and for-
malizing why they work in the proof. Bringing a veri�cation
perspective to systems entails coming up with new designs
that are more obviously correct, using veri�cation to sharpen
the layers and organization of the system.

Formalizing systems intuition. Recovery helping is a rea-
soning principle in Perennial [7] where an operation logically
appears to take place during recovery. The technique was
partly inspired by concurrency helping where one thread
completes an operation on behalf of another, typically on a
data structure. Recovery helping arose out of trying to give a
precise correctness argument to a storage system where the
linearization point ended up being in the recovery code.

GoJournal and GoTxn intuitively make a sequence of reads
and writes atomic; atomicity is the right intuition but verify-
ing these systems requires a precise contract under which op-
erations are atomic. In GoJournal we formalized this contract
using separation logic to capture the concurrency control
expected from the caller, and then in GoTxn we formalized
the transaction system’s stronger guarantee that transactions
are atomic.

Veri�cation-friendly design. In DaisyNFS we developed
the system design based on thinking about the veri�cation
story: using transactions greatly simpli�es the proof since
the code within a transaction appears to execute sequen-
tially. While �le systems do use atomicity from journaling,
DaisyNFS is a novel �le-system design where every operation
�ts into a transaction — using transactions more aggressively

is what enabled fully sequential reasoning for the rest of the
�le-system code. The insight for this system-design problem
came from thinking about veri�cation.

In GoJournal developing the proof helped us understand
the code and invariants for the write-ahead log (an inter-
nal component of the journal). Rather than thinking about
avoiding bugs in concrete executions, veri�cation forced a
principled design based on de�ning the abstract state of the
write-ahead log and how it is a�ected by a crash.

3 Other veri�ed systems
Veri�cation is useful for systems beyond storage, and for
properties other than crash safety. For example, one domain
where veri�cation is particularly valuable is security because
the assurances of a proof cover all inputs, and attackers are
motivated to �nd even obscure inputs that trigger vulnerabil-
ities.

E�cient parsing. During an internship at Microsoft Re-
search working with the Project Everest team, I worked on
parsing for a veri�ed implementation of TLS 1.3. Parsing in
TLS is challenging because the standard involves over 200 se-
rialized types, all of which must be manipulated e�ciently for
the overall implementation to be fast. I developed a speci�ca-
tion and veri�cation approach for writing e�cient imperative
parsers with the existing functional parsers as speci�cations,
including a notion of a validator that allows using serialized
data in-place without copying it. These core de�nitions went
into a veri�ed parsing framework called EverParse [5].

Deferred durability. FSCQ has a simple speci�cation that
promises each �le-system operation such as create and
rename is persisted to disk immediately and atomically; that
is, if the system crashes in the middle of an operation it ap-
pears to have occurred either completely or not at all. For
better performance, real �le systems implement optimiza-
tions that relax the persistence and atomicity guarantees,
allowing operations to be bu�ered in memory and for data
writes to be reordered with metadata operations. In followup
work we developed DFSCQ [1], which speci�es and veri�es
a particularly tricky feature from ext4 of log-bypass writes,
where �le data is written directly rather than going through a
write-ahead log. A key contribution of DFSCQ is a metadata-
pre�x speci�cation that precisely states what data must
be on disk after a crash, with a proof that the implementa-
tion meets this speci�cation even in the presence of bu�ered
operations and log-bypass writes.

Con�dentiality. File systems serve an important function
of keeping users’ data con�dential. Specifying exactly what
con�dentiality means is challenging, since typically �le sys-
tems protect �le data but not all metadata between users.
SFSCQ is a veri�ed �le system with a speci�cation that for-
malizes this security property with data noninterference [3].
SFSCQ’s proof uses a technique called sealed blocks to layer

3



the con�dentiality proof on top of DFSCQ’s existing func-
tional correctness proof. I am generally interested in incre-
mental and modular veri�cation techniques as a way
to make veri�cation more practical, in this case by sepa-
rating functional correctness from con�dentiality.

4 Future directions
My research agenda is to identify a new domain where veri�-
cation is valuable, then develop the speci�cations, veri�cation
techniques, and system designs that make veri�cation pos-
sible in that domain. So far I have executed this agenda for
concurrent and crash-safe storage systems, culminating in
a veri�ed �le system. In my future work I’m excited to ex-
pand the reach of veri�cation to other domains and build new
systems with formal veri�cation.

Security reasoning. Proving that systems preserve con�-
dentiality is a di�cult aspect of security reasoning. Testing in
this domain is especially di�cult, since it is hard to determine
whether information has leaked from merely running the sys-
tem. Formal veri�cation has room in this area to de�ne new
speci�cations, since systems are often interested in protect-
ing some data but not all (for example, �le systems typically
make total free space public), and also to scale veri�cation
up to larger systems. As in SFSCQ [3] I am interested in
reducing the proof burden by factoring out reasoning about
con�dentiality from functional correctness.

Partial failures. Distributed systems face concurrency and
crashes, like storage systems, but include an additional chal-
lenge in the form of partial failures where some but not all
nodes reboot. In this domain I’m especially interested in
advancing research that covers implementations and encom-
passes a whole system, both its clients and servers. I’d also
like to extend the recovery reasoning in Perennial to recov-
ery in a distributed system, where nodes need to re-join by
talking to existing servers.

Mixing veri�cation styles. I’m interested in exploring ver-
i�cation designs that combine general, interactive proofs
of core infrastructure with simpler, automated proofs for
clients. GoTxn and DaisyNFS are one example, where the
infrastructure is a transaction system that makes the caller’s
code atomic. I have experience with both automated and
interactive veri�cation, and such systems can combine the
best of both styles of veri�cation. Future work in this area
could include other transaction systems, or go beyond stor-
age to distributed infrastructure like map-reduce or the AWS
Lambda interface.

Safe software upgrades. Systems are not static artifacts
but instead evolve over time. This raises the challenge of
reasoning about software upgrades, such as when new soft-
ware accesses old data, or in a distributed system when nodes

running di�erent versions communicate with each other. Up-
grades are a good �t for veri�cation because like storage,
bugs can lead to permanent data corruption, and thoroughly
testing the interactions between two pieces of software is
extremely di�cult. The core concept of a crash invariant
might be directly applicable here, albeit one that is shared
between the old and new versions of the code; I am interested
in exploring the details and connecting the theory to practical
code.

References
[1] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang,

Atalay Ileri, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. Verifying a high-performance crash-safe �le system
using a tree speci�cation. In SOSP, Shanghai, China, October
2017.

[2] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. Using Crash Hoare
Logic for certifying the FSCQ �le system. In SOSP, Monterey,
CA, October 2015.

[3] Atalay Ileri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Proving con�dentiality in a �le system
using DiskSec. In OSDI, Carlsbad, CA, October 2018.

[4] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak,
Lars Birkedal, and Derek Dreyer. Iris from the ground up: a
modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:e20, 2018.

[5] Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Four-
net, Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan
Protzenko. EverParse: Veri�ed secure zero-copy parsers for au-
thenticated message formats. In USENIX Security, Santa Clara,
CA, 2019.

[6] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai
Zeldovich. Argosy: Verifying layered storage systems with
recovery re�nement. In PLDI, Phoenix, AZ, June 2019.

[7] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nick-
olai Zeldovich. Verifying concurrent, crash-safe systems with
Perennial. In SOSP, Hunstville, ON, Canada, October 2019.

[8] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai
Zeldovich. Verifying concurrent Go code in Coq with Goose. In
CoqPL, New Orleans, LA, January 2020.

[9] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans
Kaashoek, and Nickolai Zeldovich. GoJournal: a veri�ed, con-
current, crash-safe journaling system. In OSDI, July 2021.

4


	Verifying a concurrent, crash-safe file system with sequential reasoning
	Combining systems design and verification
	Other verified systems
	Future directions

