
Teaching statement
Tej Chajed

December 2021

I’m excited by the opportunity to teach and advise stu-
dents, which are both important aspects of being a pro-
fessor and activities that I enjoy doing.

1 Teaching approach
During my PhD I actively pursued opportunities to
teach, including lecturing and curriculum design, both
within and outside the classroom. My teaching phi-
losophy arises from my experience teaching in three
di�erent settings. I was actively involved in the devel-
opment and teaching of 6.826 (Principles of Computer
Systems).1 As a Fellow in the EECS Communication Lab
I’ve held over a hundred one-on-one coaching appoint-
ments for technical writing tasks, as well as run other
projects to help peers with communication. Finally, my
research builds upon the Iris concurrency framework
and I am enthusiastic about helping teach Iris.

Backward design. When preparing to teach anything,
I start by asking, what should the students be able to do
after this lecture, assignment, or activity? What are the
2–3 key messages that I would like them to remember?
Starting with these goals in mind helps focus teaching
on speci�c goals without inadvertently covering too
much material or putting emphasis in the wrong place.

One of my �rst opportunities to design a curricu-
lum was developing the programming assignments for
6.826, a new class on systems veri�cation. We wanted
students to learn fundamental principles rather than the
mechanics of the veri�cation infrastructure we were
using. As a result, we had students reason about storage
systems with relatively little code but intricate reason-
ing, avoiding a trap of students completing proofs by
“brute force” without even understanding the theorem
statements. The same objective informed my teaching
style in class recitations and o�ce hours. When students
get stuck, I get them to articulate their understanding of
the problem �rst before diving into the code. Once they
understand what they want to do, I am happy to help

1https://6826.csail.mit.edu/2020/index.html

more directly with the minutiae of translating intuition
to something the proof assistant will accept.

Experience in the Comm Lab more formally intro-
duced me to backward design, which is embodied in
both the communication training Fellows receive and
in how we approach creating workshops and lectures. I
was able to practice the process in creating a lecture for a
job search seminar, in a TA training on teaching a class
recitation, and in a training for mentors giving feed-
back on prospective students’ grad-school applications.
These teaching opportunities have gradually become
more challenging — most recently I am co-developing
a paper-writing workshop which has required careful
thought about what objectives would be suitable in the
�rst place.

Backward design has informed my teaching outside
of the classroom as well. Iris is the foundation for my
research so I have spent time on teaching Iris to the
broader programming languages community. There
are many audiences for this kind of teaching, so I’ve
worked on a few very di�erent resources. The �rst was
a blog post and subsequent lecture in 6.826,2 which was
designed to focus on some key ideas in concurrency
reasoning that Iris implements. Next, I co-taught the
Iris tutorial at POPL 2021,3 with a more ambitious goal
of helping the audience understand Iris paper or use it
themselves. Finally, in response to an audience question
I developed a separate tutorial on an advanced feature
of Iris.4

Interactivity. I believe in teaching through practical
and hands-on experience. Students learn best, and retain
what they have learned, by doing. There is no substitute
for getting students to spend time engaging with the
material, and hands-on work both demands this kind of
engagement and makes it more enjoyable. As a result
much of the teaching I do involves code and program-
ming, with well-developed exercises when possible.

In lectures, I try to have some interactive compo-
2https://youtu.be/59sPvu9RGy8
3https://gitlab.mpi-sws.org/iris/tutorial-popl21
4https://github.com/tchajed/iris-simp-lang

1

https://6826.csail.mit.edu/2020/index.html
https://youtu.be/59sPvu9RGy8
https://gitlab.mpi-sws.org/iris/tutorial-popl21
https://github.com/tchajed/iris-simp-lang


nent or demo to break up the lecture. Asking students
to discuss a question gets them to think about their
answers and gives an opportunity for them to explain
to their peers, improving everyone’s learning. I gave
three lectures in 6.826 that involved walking through a
short demo involving code that illustrated the subject of
the lecture; before seeing the code I would go through
the same ideas on the board to make sure they know
what concepts we are emphasizing. Demos are both fun
and if done well create an educational resource for the
students to examine later.

2 Advising
My main approach to advising is to build students’ con�-
dence, focus on learning, and continuously adapt to their
current needs. I’ve developed this approach through
experience: I had the privilege to directly mentor six
undergraduate and master’s students, including helping
advise two master’s theses. I’ve also been an informal
mentor for many younger grad students in my research
group.

Sometimes being a good advisor means putting the
student’s learning and goals ahead of getting research
results. I ask students to propose their own solutions
�rst rather than sharing my ideas so that they have a
chance to think things through at their own pace and
the satisfaction of solving a problem on their own. To
maintain an understanding of the student’s code, I like
to take on any “boring” work that we both agree will
not help the student learn, but which is necessary for
them to make progress.

In my �eld of systems veri�cation, students need
experience programming, both systems development
and developing machine-checked proofs (which is a sim-
ilar skill in many ways). I have found it useful to get
students started writing proof as quickly as possible,
starting with small examples or adapting an existing ex-
ample. Few students start with veri�cation experience,
and most students come in without deep mathematical
training; all types of students much better understand
veri�cation from working hands-on with proofs in a
proof assistant like Coq or a veri�cation language like
Dafny.

The ability to select a good problem is a goal of the
whole PhD process that needs to be cultivated. At the
same time, students require di�erent approaches to ad-
vising to succeed, and I plan to adapt my style to each

student’s needs and stage in their PhD. For example,
a common pattern is that students bene�t from start-
ing with more concrete, low-risk projects initially; they
learn basic research skills and build con�dence. Eventu-
ally they are able to identify problems they care about
on their own, and chart out a plan for the work.

I strongly believe in the importance of feedback,
both giving feedback regularly to students and getting
feedback from them on how things are going. For each
student, I will hold a review each semester and go over
their accomplishments and what they would like to fo-
cus on going forward — feedback should also include
what is going well, to maintain motivation. These re-
views are also a chance to assess long-term career goals,
internships, and extra-curricular activities. On the �ip
side, I will actively solicit feedback from students about
my advising and anything I could do to improve their
experience, learning, and researh.

3 Curriculum ideas
I would be excited to incorporate systems veri�cation
into the curriculum. This could start with a standalone
seminar on systems veri�cation, with a focus on recent
research — my own work has involved several veri�ca-
tion tools, so I can introduce students to a breadth of
approaches to veri�cation. Veri�cation would inform
my perspective on teaching other classes, such getting
students to think about speci�cations in databases, secu-
rity, operating systems, and networking classes. I’m also
prepared to teach any undergrad PL course, including
Software Foundations.

2


	Teaching approach
	Advising
	Curriculum ideas

