Argosy: Verifying layered storage
systems with recovery refinement

Tej Chajed, Joseph Tassarotti, Frans Kaashoek, Nickolai Zeldovich

MIT

logical disk I I I I

 JHNE
o NN

Bob writes a replication system

logical disk I I I I

O
sol | [| I
« QEIN EEOE BERE

Bob writes a replication system

logical disk IIII

»O—O0O

O
« JEER HAAN
ol | | .

Bob writes a replication system

logical disk IIII I ? II

»O—O0O

O
« JEER HAAN
ol | | .

Bob writes a replication system

logical disk IIII I ? II

»O—O0O

O > O
« JEIR HIER HAEN
= | | [| | BN |

Bob writes a replication system and implements its recovery procedure

logical diskIIII I ? II IIII
write; rep recover recovery restores

» O —O0O Invariants

O > O
« JEIR HIER HAEN
= | | [| | BN |

Bob writes a replication system and implements its recovery procedure

Bob is careful and writes a
machine-checked proof of correctness

| Disk interface |

4
replication @) read and write are atomic if you run

rep recover after every crash
4

| Two-disk interface |

| Transactions |

write-ahead logging

log recover

\

| Disk interface |

| Transactions |

write-ahead logging @) ops are atomic if you run

log recover after every crash

log recover

\

| Disk interface |

| Transactions |

M write-ahead log [¥]

Y

logging + e
| Disk interface |

#l replication [«
|

r777777777771£
Two-disk Iinterface

| Transactions |

write-ahead log [«;

r,1777777"71 logging +
Disk interface replication e

Q N rep recover Bl log recover

| Two-disk Iinterface |'

Challenge: crashes during composed recovery

rep _recover O under crashes
log recover [vEUECEeEEES

how do we prove correctness
rep recover Bl Log recover P . y
- - under crashes using the existing proofs?

Prior work cannot handle multiple recovery

procedures

M write-ahead log

|
M replication

Y

iiikhthitth

CHL [SOSP ’15]

Yggdrasil [OSDI '16]

Flashix [SCP ’16]

not modular

single recovery

restricted recovery
procedures

Argosy supports modular recovery proofs

| Transactions | developer

Proves

) urite-ahead g [V IR

Y

| Disk Interface |

B replication Ov\ developer
Y

Proves

| Two-disk interface |

Argosy supports modular recovery proofs

| Transactions | .

. Argosy
3l write-ahead log O % proves
. :)

logging + O’
Disk interface replication

Ml replication Q

Y

| Two-disk interface |

Contributions

Recovery refinement for modular proofs

10

Contributions

Recovery refinement for modular proofs

see paper GHL for proving recovery refinement

see paper Verifled example: logging + replication

10

Contributions

Recovery refinement for modular proofs

see paper GHL for proving recovery refinement

see paper Verifled example: logging + replication

see code Machine-checked proofs in Cog 3

10

Preview: recovery refinement

| Disk Interface | .
1. Normal execution correctness

v using refinement
O — 2. Crash and recovery correctness
|

using recovery refinement
| Two-disk interface |

11

Refinement

12

W VD IYIyyryya
Disk interface

replication

A0 04000404070

Two-disk interface

13

W VD IYIyyryya
Disk interface

write

replication

<

Two-disk interface

write1 write-

13

W VD IYIyyryya
Disk interface

write
replication

A0 04000404070

Two-disk interface

write1 write-

13

W VD IYIyyryya
Disk interface

read write

LJ
L]
[}

write impl
<

A0 04000404070

Two-disk interface

write1 writes

read read-

13

W VD IYIyyryya
Disk interface

read write

LJ
L]
[}

write impl
<

A0 04000404070

Two-disk interface

write1 write-

read read-

correctness is based on how we use replication:
run code using Disk interface on top of two disks

- - I

13

Correctness: trace inclusion

| Dlsk iINnterface | spec's
/ behaviors

2

code im .
Two-disk interface - +1P behaviors

14

IS
. . . . W
Proving correctness with an abstraction relation “&2»

Spec state

logical disk IIII O

d“llll
NN

1. developer provides
abstraction relation R

15

IS
. . . . W
Proving correctness with an abstraction relation “&2»

Spec state

logical disk IIII O

““llll
TR

1. developer provides
abstraction relation R

write1 write;
—-Q

15

Spec state

write
logical disk IIII O — — O

disk . .
-0
dkllll

1. developer provides
abstraction relation R
2. prove spec execution exists

15

Spec state

write
logical disk IIII O — — O IIII

disk . .
Il 1

Sl

developer provides

abstraction relation R

prove spec execution exists

and abstraction relation is preserved

15

Recovery refinement

16

WP IIIIIFIFIFFA
Disk Iinterface

read write

W IIIIFIsa
Two-disk interface

write; fwrite;
read; read>

17

Disk interface

rep recover

Two-disk interfacde

write; fwrite;
read; read>

17

Disk Interface

rep recover

Two-disk interfacde

write; fwrite;
read; read>

17

Extending trace inclusion with recovery

2
:.: /
v

| Disk interface |

X \
| wo-disk interface | specification for crash behavior

18

Extending trace inclusion with recovery

U

Disk Interface

b \ crash semantics
et es e 5 ?

Two-disk interface specification for crash beavior; [

recovery semantics

R e e L L L LR R LI L LLLLCCEEERPEY f.)
' crash & recovery behavior | <— LSS

S D
Disk Interface —

one of these

“ \
I ‘ MI‘
= recovery semantics
ReRCLEL L L L L L L L L L L LR e e e e e e L L e L L L LR EEEEEEECCLLLLLEEE LR L e : f.)

crash & recovery behavior | <«— =SS

o D
Disk Interface —

“ \
] (O -~ || O
= recovery semantics
ReRCLEL L L L L L L L L L L LR e e e e e e L L e L L L LR EEEEEEECCLLLLLEEE LR L e : f.)

crash & recovery behavior | <«— =SS

| Disk Interface |
v,

Y

Two-disk interface

code

D)

/

o
2

20

o D
Disk interface .

#l replication [«

Y

\ '
Two-disk interface
D
*

Zero-or-more iterations

| Disk Interface |
v,

Y

Two-disk interface

code

D)

o
2
*

21

Trace inclusion, with recovery

e)
Disk interface
e
roplcaiion [V

\
2
*

L4
]
L J
[]
[]
]
u
.

.

.

| Two-disk interface |

22

Proving trace inclusion, with recovery

*

23

Proving trace inclusion, with recovery

*
I'N
\ crash must occur

during some operation

23

Proving trace inclusion, with recovery

*

23

Proving trace inclusion, with recovery

o B

R R

*

23

Proving trace inclusion, with recovery

O

R
*

23

Proving trace inclusion, with recovery

O

R R
*

23

Recovery refinement

non-crash execution

crash and recovery execution

: . loflo

R

>

*

O
R

24

Recovery refinement

non-crash execution

crash and recovery execution

: . loflo

R

>

*

O
R

¢ Trace inclusion

implies

> specification behavior
D

running code behavior

24

Composition theorem

Kleene algebra for transition relations

expression

o [op:
Off -0

20

Kleene algebra for transition relations

expression

Off -0

*

matching transitions

oa"ac»"ao

20

Theorem: recovery refinements compose

Transactions

write-ahead log
B

|f Disk interface

replication

] rep. recover

Two-disk interface

.
\J
.

Theorem: recovery refinements compose

If

Transactions

write-ahead log
B

Disk Interface

replication

] rep. recover

Two-disk interface

then

Transactions

logging +

replication
. Prevrecover:
log recover

.

\J

.
"

Two-disk interface

27

Goal: prove composed recovery correct

rep recover O under crashes
Ml) under crashes

rep recover B Log recover

28

Goal: prove composed recovery correct

rep recover

L» O under crashes

log recover

__» log

=

O under crashes

29

30

30

*
rep (Vo
*
E-

*
(ol o] - io)

how to re-use recovery proofs here?

30

Using Kleene algebra for reasoning

*
CoTeT o

Using Kleene algebra for reasoning

*
CoTeT o

after de-nesting (p | ¢)* = p*(gp™)*

Using Kleene algebra for reasoning

*
CoTeT o

)

after de-nesting (p | ¢)* = p*(gp

* * ok
- (ol = SO [wiopl=]

31

Using Kleene algebra for reasoning

*
CoTeT o

)

after de-nesting (p | ¢)* = p*(gp
* * ok

¥ of-] ol opl] -

after sliding (PQ')*P = P(C]P)*

* * *
- (BT e m)

31

After rewrite both proofs apply
ookl o toltol)

After rewrite both proofs apply

replication proof

After rewrite both proofs apply

replication proof

After rewrite both proofs apply

ol ’:]

rep |nvar|ant3
restored behaves ||ke rephcathn pl’OOf

’ -

log mvanants
restored

write-ahead log proof

32

Argosy is implemented and verified in Coq

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

github.com/mit-pdos/argosy

33

Argosy: modular proofs of layered storage systems

=

34

Argosy: modular proofs of layered storage systems

Kleene algebra (O] |)*

34

Argosy: modular proofs of layered storage systems

Kleene algebra (O] |)*

o — B
| S

recovery refinement

34

Argosy: modular proofs of layered storage systems

Kleene algebra (O] |)*

o —— EEE o
| |

recovery refinement

modular proofs | | - v,

34

Argosy: modular proofs of layered storage systems

Kleene algebra (O] |)*

o — B
| S

come find us after! ‘ ‘ ‘

recovery refinement

<’ Tej and J ;
e] an oe * -
modular proofs | | O

34

