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Bob is careful and writes a
machine-checked proof of correctness
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Challenge: crashes during composed recovery

rep _recover O under crashes
log recover [vEUECEeEEES

how do we prove correctness
rep recover Bl Log recover P . y
- - under crashes using the existing proofs?




Prior work cannot handle multiple recovery

procedures

M write-ahead log

|
M replication

Y

iiikhthitth

CHL [SOSP ’15]

Yggdrasil [OSDI '16]

Flashix [SCP ’16]

not modular

single recovery

restricted recovery
procedures



Argosy supports modular recovery proofs
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Argosy supports modular recovery proofs
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Recovery refinement for modular proofs
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Preview: recovery refinement
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Correctness: trace inclusion
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Recovery refinement
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Extending trace inclusion with recovery
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Extending trace inclusion with recovery
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Trace inclusion, with recovery
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Proving trace inclusion, with recovery
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Recovery refinement
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Recovery refinement
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Composition theorem
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Theorem: recovery refinements compose
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Theorem: recovery refinements compose
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Goal: prove composed recovery correct
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Using Kleene algebra for reasoning
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Using Kleene algebra for reasoning
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After rewrite both proofs apply
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Argosy is implemented and verified in Coq

3,200 lines for framework

4,000 lines for verified example (logging + replication)

Example extracts to Haskell and runs

github.com/mit-pdos/argosy
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Argosy: modular proofs of layered storage systems
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Argosy: modular proofs of layered storage systems
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