
Extending a verified file system with concurrency

Tej Chajed (student)
Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich (advisors)

2 pages

Abstract
Concurrency is a major source of bugs in file systems, and
it remains one of the challenging open problems in applying
formal verification in that domain. This research contributes
CFSCQ, the first concurrent file system with a formal proof
that its implementation meets its specification. CFSCQ uses
a novel approach, called optimistic system calls, to reuse
the implementation, specification, and proof of a verified
sequential file system.

1. Introduction
Many applications, including databases, rely on file systems
to store their data persistently. However, file systems have a
long history of bugs that lead to incorrect result, data corrup-
tion, or data loss. An extensive study of bugs in several file
systems from the Linux 2.6 kernel [20] found that most bugs
(over 50%) are semantic bugs that require an understand-
ing of file-system semantics to find or fix, and the next most
common source of bugs is concurrency issues (about 20%),
such as inadvertently updating shared state in a supposedly
read-only operation that holds no locks. File systems are par-
ticularly prone to concurrency bugs because all threads must
access the same complex shared state: both the persistent
state as well as various in-memory caches.

Formal verification is a promising approach to address
file-system bugs, because it allows developers to specify the
precise semantics that a file system should provide, and be-
cause it ensures that these semantics are followed in all pos-
sible corner cases. Prior work has shown that this can work
for a sequential file system [1, 5, 25], thus addressing the
first category of bugs mentioned above. However, since prior
work is limited to single-threaded file systems, it cannot ad-
dress the next most prominent source of file system bugs,
namely concurrency issues.

This research aims to produce the first formally verified
concurrent file system, CFSCQ (Concurrent FSCQ). CFSCQ
supports concurrent I/O and concurrent readers, but does not
support concurrent writers. Concurrent I/O allows the disk1

to service several pending reads while the CPU is executing

1 By “disk” we mean any storage device, including rotational disks and
SSDs.

another system call. CFSCQ also allows multiple processes
to execute read-only system calls on multiple cores, in par-
allel with one read-write system call, which is a good fit for
read-mostly workloads. However, CFSCQ is not as sophis-
ticated as modern file systems such as Linux ext4, which
allow concurrent writers to different parts of the file system.

Even CFSCQ’s concurrency is difficult to get right. With
I/O concurrency, one process may start reading a directory
block from disk, but while that process is waiting, another
process may either write to that directory block or delete the
directory altogether. With concurrent readers, it is important
to ensure that updates of caches are done safely, such as a
name lookup updating a directory cache; in other words, sys-
tem calls that are semantically read-only (such as stating a
file) can actually write shared state (such as updating the di-
rectory cache as a result of looking up the file).

To verify CFSCQ, our work uses ideas from optimistic
transactions [18] [23, §9.4.3] in an approach we call op-
timistic system calls (OSC). In this approach, system calls
are executed as atomic actions in some sequential order. Ev-
ery system call optimistically runs without locks, but if it
makes any changes (such as scheduling disk I/O or modify-
ing memory), it is aborted and retried while holding a global
file-system lock. Readers obtain a snapshot of the system
state when they start executing, and appear to execute in-
stantaneously at that point. The key benefit of OSC is that it
allows reusing existing implementations, specifications, and
proofs from a sequential verified file system.

2. Approach
CFSCQ supports two forms of concurrency: disk reads con-
current with system calls executing on the CPU and concur-
rent read-only operations that use only in-memory caches.
We aim to provide a linearizable specification, where each
system call executes atomically, and the system calls appear
to execute in some linear order [16]. This specification fits
naturally with our approach: the execution behavior resem-
bles this description and the atomic behavior of each system
call is taken from the sequential file system specification.
However, it precludes sophisticated optimizations that arise
from fine-grained locking within system calls and result in a
relaxed but more concurrent specification.



Even with our modest concurrency goals, the file system
must have a plan for coordinating the concurrent execution
of system calls. We use a global lock for serializing the ex-
ecution of writers, and use snapshots to ensure consistent
execution of readers. For concurrent disk I/O, we explicitly
yield when waiting for I/O completion, so that another sys-
tem call can execute in the meantime, possibly issuing addi-
tional concurrent I/O requests to the disk.

The file system does not know upfront if a given system
call will require I/O (due to reading an address not in the
cache) or update the system state (by writing to memory).
Instead, it optimistically initially executes in read-only mode
and aborts; if any update is required, it retries with a global
write lock. This allows read-only system calls to run con-
currently on different calls, when possible, but still provides
correct execution when some file-system state needs to be
updated. When a disk read is required, we achieve I/O con-
currency by releasing the global lock while waiting for the
disk, returning to the system call that needed the disk block
after updating the cache.

There are two nuances to aborting and retrying which we
must correctly handle when writing an OSC. The first is that
before aborting, a system call may have made some changes.
Exposing these changes to other system calls would break
the atomicity of system calls. We address this problem by
taking a snapshot of in-memory state and rolling back to this
snapshot upon abort; this is easy to implement since the file
system is written in a functional language with the state in
a persistent data structure. The second issue is that between
restarting and acquiring the global lock other threads may
run. It is important to ensure that if the system call was safe
to run initially it continues to be safe even after other threads
run. We address this concern by assuming a global protocol
on file system usage where each thread is restricted to a
directory disjoint from the others and thus does not unduly
modify other threads’ state. Note that the protocol places no
restriction on what directories threads may read from, only
writes.

3. Related work
There is a great deal of related work we build upon and
extend, encompassing file systems work, verified systems,
program logics and other formal methods, and techniques
for concurrent programming. We give a necessarily brief
overview here.

Modern file systems have taken an incremental approach
to supporting concurrency, going from a big kernel lock to
finer-grained locking over time. A good recent example of
applying this incremental approach is NetApp’s Waffinity
file system [10]. The approach taken in that work has a
similar goal of adding concurrency while re-using a (large)
existing implementation, though in an unverified context.

There are several verified file systems, including Yg-
gdrasil [25] and Cogent [1], but the file system CFSCQ

builds upon is FSCQ [5], where we were able to make the
necessary changes to the execution model and verification
framework. Related to our work is other work on verify-
ing concurrent systems, though none of these have been
applied to file systems. These include work on verifying
Hyper-V [6–8], a concurrent garbage collector [15], the Cer-
tiKOS concurrent operating system [4, 13], and verified dis-
tributed systems [14, 19, 26]. These approaches differ widely
in how they approach, model, and verify concurrent systems;
none could be retro-fitted onto an existing verified file sys-
tem, without significant changes to the code and especially
proofs.

There are many formal methods techniques relevant to
our work. These include linearizability [16], work on speci-
fying file systems [21, 22], and concurrent logics [2, 11, 12,
17].

Our OSC approach is in some ways similar to a long line
of work on optimistic concurrency control [18, 23] as well
as software transactional memory (STM) [24].

4. Preliminary results
We have implemented and verified CFSCQ in the Coq proof
assistant [9], building on top of FSCQ’s implementation and
proofs. The approach follows FSCQ in many respects. We
wrote a verification framework to model cooperative concur-
rency, a high-level view of shared memory, and disk I/O op-
erations with asynchronous reads. The model of disk writes
is the same as in FSCQ’s verification framework. CFSCQ
includes a translator that translates FSCQ system calls into
its concurrent verification framework, while also translating
proofs. These result in verified optimistic system calls. Fi-
nally, CFSCQ wraps each system call in a retry loop and ex-
poses a linearizable specification based on the FSCQ speci-
fication. Since the approach uses FSCQ’s implementation in
a black-box manner, we were able to use the latest version of
FSCQ (as described in an upcoming SOSP 2017 paper [3]),
benefitting from its significantly improved performance with
no additional burden in our implementation or proofs.

The remaining work is to improve the performance of the
CFSCQ prototype. The prototype uses Coq’s extraction fa-
cility to generate executable Haskell code, which we link
with a hand-written concurrent runtime. OSCs and the con-
current runtime have overheads and concurrency bottlenecks
that we have not yet fixed. On the other hand, microbench-
marks of the I/O concurrency do achieve better performance
than FSCQ’s blocking reads on a slow-enough disk.

References
[1] AMANI, S., HIXON, A., CHEN, Z., RIZKALLAH, C.,

CHUBB, P., O’CONNOR, L., BEEREN, J., NAGASHIMA, Y.,
LIM, J., SEWELL, T., TUONG, J., KELLER, G., MURRAY,
T., KLEIN, G., AND HEISER, G. COGENT: Verifying high-
assurance file system implementations. In Proceedings of the
21st International Conference on Architectural Support for



Programming Languages and Operating Systems (ASPLOS)
(Atlanta, GA, Apr. 2016), pp. 175–188.

[2] BROOKES, S. A semantics for concurrent separation
logic. Theoretical Computer Science 375, 1–3 (May 2007).
Festschrift for John C. Reynolds’s 70th Birthday.

[3] CHEN, H., KONRADI, A., WANG, S., CHAJED, T., İLERI,
A., CHLIPALA, A., KAASHOEK, M. F., AND ZELDOVICH,
N. Using the metadata-prefix specification to verify a high-
performance crash-safe file system. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP)
(Shanghai, China, Oct. 2017).

[4] CHEN, H., WU, X., SHAO, Z., LOCKERMAN, J., AND GU,
R. Toward compositional verification of interruptible os ker-
nels and device drivers. In Proceedings of the 2016 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI) (Santa Barbara, CA, June 2016),
pp. 431–447.

[5] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using Crash
Hoare Logic for certifying the FSCQ file system. In Pro-
ceedings of the 25th ACM Symposium on Operating Systems
Principles (SOSP) (Monterey, CA, Oct. 2015), pp. 18–37.

[6] COHEN, E., DAHLWEID, M., HILLEBRAND, M. A.,
LEINENBACH, D., MOSKAL, M., SANTEN, T., SCHULTE,
W., AND TOBIES, S. VCC: A practical system for verifying
concurrent C. In Proceedings of the 22nd International Con-
ference on Theorem Proving in Higher Order Logics (Munich,
Germany, Aug. 2009).

[7] COHEN, E., MOSKAL, M., SCHULTE, W., AND TOBIES, S.
A practical verification methodology for concurrent programs.
Tech. Rep. MSR-TR-2009-2019, Microsoft Research, Feb.
2009.

[8] COHEN, E., MOSKAL, M., SCHULTE, W., AND TOBIES, S.
Local verification of global invariants in concurrent programs.
In Proceedings of the 22nd International Conference on Com-
puter Aided Verification (CAV) (Edinburgh, UK, July 2010).

[9] COQ DEVELOPMENT TEAM. The Coq Proof Assistant Ref-
erence Manual, Version 8.6.1. INRIA, July 2017. http:
//coq.inria.fr/distrib/current/refman/.

[10] CURTIS-MAURY, M., DEVADAS, V., FANG, V., AND

KULKARNI, A. To Waffinity and beyond: A scalable archi-
tecture for incremental parallelization of file system code. In
Proceedings of the 12th Symposium on Operating Systems De-
sign and Implementation (OSDI) (Savannah, GA, Nov. 2016),
pp. 419–434.

[11] DINSDALE-YOUNG, T., BIRKEDAL, L., GARDNER, P.,
PARKINSON, M., AND YANG, H. Views: Compositional
reasoning for concurrent programs. In Proceedings of the
40th ACM Symposium on Principles of Programming Lan-
guages (POPL) (Rome, Italy, Jan. 2013), pp. 287–300.

[12] FENG, X. Local rely-guarantee reasoning. In Proceedings
of the 36th ACM Symposium on Principles of Programming
Languages (POPL) (Savannah, GA, Jan. 2009).

[13] GU, R., SHAO, Z., CHEN, H., WU, X. N., KIM, J.,
SJÖBERG, V., AND COSTANZO, D. CertiKOS: An extensible
architecture for building certified concurrent OS kernels. In

Proceedings of the 12th Symposium on Operating Systems De-
sign and Implementation (OSDI) (Savannah, GA, Nov. 2016),
pp. 653–669.

[14] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL,
B. IronFleet: Proving practical distributed systems correct.
In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP) (Monterey, CA, Oct. 2015), pp. 1–
17.

[15] HAWBLITZEL, C., PETRANK, E., QADEER, S., AND

TASIRAN, S. Automated and modular refinement reasoning
for concurrent programs. In Proceedings of the 27th Interna-
tional Conference on Computer Aided Verification (CAV) (San
Francisco, CA, July 2015).

[16] HERLIHY, M. P., AND WING, J. M. Linearizability: a cor-
rectness condition for concurrent objects. ACM Transactions
on Programming Languages Systems 12, 3 (1990), 463–492.

[17] JONES, C. B. Tentative steps toward a development method
for interfering programs. ACM Transactions on Programming
Languages and Systems 5, 4 (Oct. 1983), 596–619.

[18] KUNG, H. T., AND ROBINSON, J. T. On optimistic methods
for concurrency control. ACM Transactions on Database
Systems 6, 2 (June 1981), 213–226.

[19] LESANI, M., BELL, C. J., AND CHLIPALA, A. Chapar:
Certified causally consistent distributed key-value stores. In
Proceedings of the 43rd ACM Symposium on Principles of
Programming Languages (POPL) (St. Petersburg, FL, Jan.
2016), pp. 357–370.

[20] LU, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., AND LU, S. A study of Linux file system evolution.
ACM Transactions on Storage 10, 1 (Jan. 2014), 31–44.

[21] NTZIK, G., AND GARDNER, P. Reasoning about the POSIX
file system: Local update and global pathnames. In Proceed-
ings of the 2015 Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (Pitts-
burgh, PA, Oct. 2015), pp. 201–220.

[22] RIDGE, T., SHEETS, D., TUERK, T., GIUGLIANO, A.,
MADHAVAPEDDY, A., AND SEWELL, P. SibylFS: formal
specification and oracle-based testing for POSIX and real-
world file systems. In Proceedings of the 25th ACM Sym-
posium on Operating Systems Principles (SOSP) (Monterey,
CA, Oct. 2015), pp. 38–53.

[23] SALTZER, J. H., AND KAASHOEK, M. F. Principles of Com-
puter System Design: An Introduction. Morgan Kaufmann,
2009.

[24] SHAVIT, N., AND TOUITOU, D. Software transactional
memory. In Proceedings of the 14th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (Ottawa,
Canada, Aug. 1995), pp. 204–213.

[25] SIGURBJARNARSON, H., BORNHOLT, J., TORLAK, E., AND

WANG, X. Push-button verification of file systems via crash
refinement. In Proceedings of the 12th Symposium on Oper-
ating Systems Design and Implementation (OSDI) (Savannah,
GA, Nov. 2016), pp. 1–16.

[26] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:

http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/


A framework for implementing and formally verifying dis-
tributed systems. In Proceedings of the 2015 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation (PLDI) (Portland, OR, June 2015), pp. 357–368.


	Introduction
	Approach
	Related work
	Preliminary results

