
Verifying concurrent software
using movers in CSPEC

Tej Chajed, Frans Kaashoek, Butler Lampson*, Nickolai Zeldovich

MIT CSAIL and *Microsoft

Concurrent software is difficult to get right

!2

Programmer cannot reason

about code in sequence…

Concurrent software is difficult to get right

!3

instead, must consider many executions:
Programmer cannot reason

about code in sequence…

Concurrent software is difficult to get right

!3

instead, must consider many executions:

…

Programmer cannot reason

about code in sequence…

Goal: verify concurrent software

!4

Challenge for formal verification

• Proofs must also cover every execution

• Many approaches to managing this complexity

• movers [Lipton, 1975]

• rely-guarantee [1983]

• RGSep [CONCUR 2007]

• FCSL [PLDI 2015]

• Iris [POPL 2017, LICS 2018, others]

• many others

!5

Challenge for formal verification

• Proofs must also cover every execution

• Many approaches to managing this complexity

• movers [Lipton, 1975]

• rely-guarantee [1983]

• RGSep [CONCUR 2007]

• FCSL [PLDI 2015]

• Iris [POPL 2017, LICS 2018, others]

• many others

• This work: our experience using movers

!5

Movers: reduce concurrent executions to
sequential ones

!6

time

B32A1

blue thread

green thread

1 2 3

A B

Movers: reduce concurrent executions to
sequential ones

!6

has the same effect as movers

B32A1

blue thread

green thread

1 2 3

A B

B32 A1

Movers: reduce concurrent executions to
sequential ones

!6

has the same effect as movers

sequential reasoning

B32A1

blue thread

green thread

1 2 3

A B

B32 A1

B32 A1

Prior systems with mover reasoning

!7

CIVL [CAV ’15, CAV ’18] framework relies pen & paper proofs

IronFleet [SOSP ’15] only move network send/receive

Contribution: CSPEC

• Framework for verifying concurrency in systems software

• general-purpose movers

• patterns to support mover reasoning

• machine checked in Coq to support extensibility

!8

Contribution: CSPEC

• Framework for verifying concurrency in systems software

• general-purpose movers

• patterns to support mover reasoning

• machine checked in Coq to support extensibility

• Case studies using CSPEC

• Lock-free file-system concurrency

• Spinlock on top of x86-TSO (see paper)

!8

Case study: mail server using file-system
concurrency

!9

spool

file system

mbox

Mail servers exploit file-system concurrency

!10

spool

file system

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

mbox

1 2 3

Mail servers exploit file-system concurrency

!11

spool

file system

msg

mbox

1 2 3

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Spooling avoids reading partially-written messages

!12

spool

file system

mbox

1 2 3

$TID =10

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Spooling avoids reading partially-written messages

!12

spool

file system

10

mbox

1 2 3

$TID =10

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

10

Threads use unique IDs to avoid conflicts

!13

spool

file system

10

msg

mbox

1 2 3

$TID =10 $TID =11

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Threads use unique IDs to avoid conflicts

!14

spool

file system

10

mbox

1 2 3

$TID =10 $TID =11

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Threads use unique IDs to avoid conflicts

!14

spool

file system

10 11

mbox

1 2 3

$TID =10 $TID =11

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Timestamps help generate unique message names

!15

spool

file system

mbox

1 2 3 410 11

link(/spool/11, /mbox/4)

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Timestamps help generate unique message names

!16

spool mbox

1 2 3

file system

410 11

link(/spool/10, /mbox/4)

EEXISTS ✗

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Timestamps help generate unique message names

!17

spool

file system

mbox

1 2 3 4 510 11

link(/spool/10, /mbox/5)

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Delivery concurrency does not use locks

!18

spool

file system

mbox

1 2 3 5410

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Delivery concurrency does not use locks

!19

spool

file system

mbox

1 2 3 4 5

accept
def deliver(msg):
 # spool
 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)
 # store
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break
cleanup

 unlink(“/spool/$TID”)

Proving delivery correct in CSPEC

!20

file-system spec

delivery specification

implementation
and proof

CSPEC CSPEC provides supporting definitions

and theorems

Proof engineer reasons about file-system
operations

!21

def deliver(msg):
 create(“/spool/$TID”, msg)
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break

 unlink(“/spool/$TID”)

create(
 /sp/$TID,
 msg)

✓

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

✓

unlink(
 /sp/$TID)

✓

Proof engineer reasons about file-system
operations

!21

def deliver(msg):
 create(“/spool/$TID”, msg)
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break

 unlink(“/spool/$TID”)

create(
 /sp/$TID,
 msg)

✓

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

✓

unlink(
 /sp/$TID)

✓

 create(“/spool/$TID”)
 write(“/spool/$TID”, msg)

collapsed to

one operation

Proof engineer reasons about interleaving of file-
system operations

!22

def deliver(msg):
 create(“/spool/$TID”, msg)
while True:
 t = time.time()
 if link(“/spool/$TID”,
 “/mbox/$t”):
 break

 unlink(“/spool/$TID”)

We assume file-system operations are atomic

create(
 /sp/$TID,
 msg)

✓

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

✓

unlink(
 /sp/$TID)

✓

create

✓
link unlink

Proving atomicity of delivery

!23

atomicity: concurrent deliveries appear
to execute all at once (in some order)

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link unlink

deliver
create

✓
link

✗

link unlink
deliver

Proving atomicity of delivery

!23

atomicity: concurrent deliveries appear
to execute all at once (in some order)

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link unlink

deliver
create

✓
link

✗

link unlink
deliver

Step 1: developer identifies commit point

Proving atomicity of delivery

!23

atomicity: concurrent deliveries appear
to execute all at once (in some order)

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link unlink

deliver
create

✓
link

✗

link unlink
deliver

Step 1: developer identifies commit point

Step 2: prove operation occurs
logically at commit point

Example of movers for this execution

!24

create

✓
link

✗

link unlinkcreate

✓
link unlink

Example of movers for this execution

!24

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link

✗

link unlinkcreate

✓
link unlink

Example of movers for this execution

!24

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link

✗

link unlinkcreate

✓
link unlink

create

✓
link

✗

link unlinkcreate

✓
link unlink

Right mover can be reordered after any green
thread operation

!25

A
r

A
r

Right mover can be reordered after any green
thread operation

!25

A
r

A
r

left movers are the converse

Movers need to consider only possible operations
from other threads

!26

create(
 /sp/$TID,
 msg)

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

unlink(
 /sp/$TID)

is one of

A
r

A
rfor all green operations ,

is a right mover ifA

left movers are the converse

Example mover proof: failing link is a right mover

!27

Proof sketch (only case):link

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

Example mover proof: failing link is a right mover

!27

Proof sketch (only case):link

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

✓

$t $t≠

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

✗

link

✓
link

(otherwise then is impossible)

Example mover proof: failing link is a right mover

!27

Proof sketch (only case):link

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

✓

$t $t≠

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

✗

link

✓
link

(otherwise then is impossible)

link operations are independent⟹

Failing link does not move left

!28

Failing link does not move left

!28

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

✓

link(
 /sp/$TID,
 /mbox/$t)

EEXISTS ✗

if = $t $t

Challenge: how to limit what other operations to
consider in mover proofs?

!29

Delivery

File system

•deliver

•create(f, d)
•link(f1, f2)
•unlink(f)
•rename(f1, f2)

mover proof?

Challenge: how to limit what other operations to
consider in mover proofs?

!29

Delivery

File system

•deliver

•create(f, d)
•link(f1, f2)
•unlink(f)
•rename(f1, f2)

mover proof?

create(
 f1, d)

create(
 f2, d)

create(
 f1, d)

create(
 f2, d)

if filenames are identical

Layers enable mover reasoning

!30

Delivery

File system

•deliver

•create(f, d)
•link(f1, f2)
•unlink(f)
•rename(f1, f2)

Layers limit what operations are available

 use multiple layers to make operations movers⟹

Layers enable mover reasoning

!31

Delivery

File system

Restricted file system

restrict arguments to
include $TID

•create(/spool/$TID, d)
•link(/spool/$TID, /mbox/$t)
•unlink(/spool/$TID)

mover proof✓

Layers limit what operations are available

 use multiple layers to make operations movers⟹

Layers enable mover reasoning

!31

Delivery

File system

Restricted file system

upper layers can only use restricted operations

•create(/spool/$TID, d)
•link(/spool/$TID, /mbox/$t)
•unlink(/spool/$TID)

mover proof✓

Layers limit what operations are available

 use multiple layers to make operations movers⟹

Movers are a layer proof pattern

!32

mover pattern

Obligation for developer: movers for each implementation

layer 1

layer 2 A B C D

foo bar

Movers are a layer proof pattern

!32

mover pattern

A B DC

B A C

def foo:

def bar:

Obligation for developer: movers for each implementation

layer 1

layer 2 A B C D

foo bar

Movers are a layer proof pattern

!32

mover pattern

A B DC

B A C

def foo:

def bar:

Obligation for developer: movers for each implementation

CSPEC theorem: entire layer implementation is atomic

layer 1

layer 2 A B C D

foo bar

CSPEC provides other patterns to
support mover reasoning

• Abstraction / forward simulation

• Invariants

• Error state

• Protocols

• Retry loops

• Partitioning

!33

(see paper for details)

pattern
obligations proof connecting

layers

Using CSPEC to verify CMAIL

!34

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

CSPEC
auto generated

framework

Using CSPEC to verify CMAIL

!34

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)
 

Coq
extraction

CSPEC
auto generated

framework

Using CSPEC to verify CMAIL

!34

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)
 

Coq
extraction

GHC

CSPEC

executable

auto generated

framework

Linux

What is proven vs. assumed correct?

!35

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)

Coq
extraction

GHC

CSPEC

executable

✓ok

Coq proof checker

Linux

proven

auto generated

assumed correct

Concurrency inside CMAIL is proven

!36

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)

Coq
extraction

GHC

CSPEC

executable

✓ok

Coq proof checker

Linux

proven

auto generated

assumed correct

Trust that the tools and OS are correct

!37

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)

Coq
extraction

GHC

CSPEC

executable

✓ok

Coq proof checker

Linux

proven

auto generated

assumed correct

Mail server-specific assumptions

!38

file-system spec

mail library spec

implementation
layers

patterns

CMAIL (Coq)

Coq

calls to
file-system

SMTP +
POP3

extracted
implementation

CMAIL (Haskell)

Coq
extraction

GHC

CSPEC

executable

✓ok

Coq proof checker

Linux

proven

auto generated

assumed correct

Evaluation

• Can CMAIL exploit file-system concurrency for speedup?

• How much effort was verifying CMAIL?

• What is the benefit of CSPEC’s machine-checked proofs?

!39

CMAIL achieves speedup with multiple cores

!40

kr
eq

/s

0

35

70

105

140

cores
1 2 3 4 5 6 7 8 9 10 11 12

CMAIL GoMail

CMAIL was work but doable

!41

proof:code ratio

CMAIL 11.5x

CertiKOS 13.8x

IronFleet 7.7x

IronClad 4.8x

CompCert 4.6x

Took two authors 6 months

{concurrent

{sequential

Machine-checked proofs give confidence in
framework changes

!42

Three anecdotes of changes to CSPEC:

Machine-checked proofs ensure soundness of entire system

Machine-checked proofs give confidence in
framework changes

!42

• Implemented partitioning pattern to support multiple users

Three anecdotes of changes to CSPEC:

Machine-checked proofs ensure soundness of entire system

Machine-checked proofs give confidence in
framework changes

!42

• Implemented partitioning pattern to support multiple users

• Improved mover pattern for a CMAIL left mover proof

Three anecdotes of changes to CSPEC:

Machine-checked proofs ensure soundness of entire system

Machine-checked proofs give confidence in
framework changes

!42

• Implemented partitioning pattern to support multiple users

• Improved mover pattern for a CMAIL left mover proof

• Implemented error-state pattern for the x86-TSO lock proof

Three anecdotes of changes to CSPEC:

Machine-checked proofs ensure soundness of entire system

CSPEC is a framework for verifying concurrency in
systems software

• Layers and patterns (esp. movers) make proofs manageable

• Machine-checked framework supports adding new patterns

• Evaluated by verifying mail server and x86-TSO lock

github.com/mit-pdos/cspec

!43

https://github.com/mit-pdos/cspec

CSPEC is a framework for verifying concurrency in
systems software

• Layers and patterns (esp. movers) make proofs manageable

• Machine-checked framework supports adding new patterns

• Evaluated by verifying mail server and x86-TSO lock

github.com/mit-pdos/cspec

!43

poster #1

https://github.com/mit-pdos/cspec

!44

Backup slides

CMAIL perf experimental setup

Performance experiment setup for CMAIL

!45

in-memory file system

process

client

deliver +

pickup

CMAIL

core 1

Performance experiment setup for CMAIL

!45

…

in-memory file system

process

client

deliver +

pickup

CMAIL

core 1

process

client

deliver +

pickup

CMAIL

core 2

process

client

deliver +

pickup

CMAIL

core 12

