
Verifying the DaisyNFS concurrent and crash-
safe file system with sequential reasoning

Tej Chajed

MIT CSAIL 

(now VMware Research & 
UW-Madison)

Joseph Tassarotti

Boston College 

(now NYU)

Mark Theng

MIT CSAIL

Frans Kaashoek

MIT CSAIL

Nickolai Zeldovich

MIT CSAIL

2

File-system correctness is important but challenging

Applications rely on file system to store data

Prone to bugs due to optimizations

Bugs can lead to data loss

3

Approach: formal verification

DaisyNFS code

NFS 
protocol

client
Go 

compiler
daisy-nfsd

3

Approach: formal verification

DaisyNFS code

NFS 
protocol

client

Theorem: the server correctly
implements the NFS protocol.

Go 
compiler

daisy-nfsd

3

Approach: formal verification

DaisyNFS code

NFS 
protocol

client

Theorem: the server correctly
implements the NFS protocol.

verification 
tool

spec:

RFC 1813

proof

Go 
compiler

daisy-nfsd

3

Approach: formal verification

✓

DaisyNFS code

NFS 
protocol

client

Theorem: the server correctly
implements the NFS protocol.

verification 
tool

spec:

RFC 1813

proof

Go 
compiler

daisy-nfsd

4

Challenges in verifying a file system

Crashes Concurrency

5

Contribution: verification-friendly design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

5

Contribution: verification-friendly design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

5

Contribution: verification-friendly design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

Sequential reasoning

5

Contribution: verification-friendly design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

Simulation-transfer theorem turns sequential
reasoning into concurrent & crash-safe correctness

Sequential reasoning

6

DaisyNFS is a real file system

6

DaisyNFS is a real file system

7

System design

func handleCommand(req) {

 switch req.cmd {

 case MKDIR: fs.MKDIR(…)

 case LOOKUP: fs.LOOKUP(…)

 …

 }

}

Go (unverified)

7

System design

func handleCommand(req) {

 switch req.cmd {

 case MKDIR: fs.MKDIR(…)

 case LOOKUP: fs.LOOKUP(…)

 …

 }

}

Go (unverified)

method MKDIR(d_ino, name)

method LOOKUP(d_ino, name)

 returns (ino:Ino)

…

Dafny (verified)

7

System design

func handleCommand(req) {

 switch req.cmd {

 case MKDIR: fs.MKDIR(…)

 case LOOKUP: fs.LOOKUP(…)

 …

 }

}

Go (unverified)

method MKDIR(d_ino, name)

method LOOKUP(d_ino, name)

 returns (ino:Ino)

…

Dafny (verified)
tx := Begin()

tx.Read(…)

tx.Write(…)

tx.Commit()

Go (verified)

8

DaisyNFS’s top-level correctness theorem

MKDIR(…) LOOKUP(…)

NFS (spec)

MKDIR LOOKUP

8

DaisyNFS’s top-level correctness theorem

MKDIR(…) LOOKUP(…)

NFS (spec)

MKDIR LOOKUP

MKDIRLOOKUP

MKDIR

…

8

DaisyNFS’s top-level correctness theorem

MKDIR(…) LOOKUP(…)

Go (code)

NFS (spec)

MKDIR LOOKUP

MKDIRLOOKUP

MKDIR

…

…

8

DaisyNFS’s top-level correctness theorem

MKDIR(…) LOOKUP(…)

Go (code)

NFS (spec)

MKDIR LOOKUP

Every daisy-nfsd execution

should have corresponding 
atomic execution in spec

MKDIRLOOKUP

MKDIR

…

…

9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant

9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant

Sequential reasoning 
has low proof overhead

10

Simulation-transfer theorem

GoTxn

NFS

MKDIR code

MKDIR spec

input: forward simulation for
every operation

10

Simulation-transfer theorem

GoTxn

NFS

MKDIR code

MKDIR spec

input: forward simulation for
every operation

Go

…

output: concurrent, crash-safe refinement

NFS

MKDIR LOOKUP

MKDIRLOOKUP

MKDIR

…

11

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

11

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

transactions are atomic

(GoTxn proof)

GoTxn API

11

Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

transactions are atomic

(GoTxn proof)

GoTxn API

sequential transactions 
are correct

(DaisyNFS proof)

12

Theorem needs some assumptions for atomicity

All shared state must go through the transaction system

12

Theorem needs some assumptions for atomicity

All shared state must go through the transaction system

Challenge: how to integrate in-memory allocator state
(for performance reasons)?

13

Naive in-memory allocator would be slow

method WRITE(ino) {

 tx := Begin()

 a := Alloc()

 … // add a to ino

 markUsed(tx, a)

 tx.Commit()

}

method REMOVE(ino) {

 tx := Begin()

 … // get a from ino

 Free(a)

 markFree(tx, a)

 tx.Commit()

}

13

Naive in-memory allocator would be slow

method WRITE(ino) {

 tx := Begin()

 a := Alloc()

 … // add a to ino

 markUsed(tx, a)

 tx.Commit()

}

method REMOVE(ino) {

 tx := Begin()

 … // get a from ino

 Free(a)

 markFree(tx, a)

 tx.Commit()

}

allocator 
lock

13

Naive in-memory allocator would be slow

method WRITE(ino) {

 tx := Begin()

 a := Alloc()

 … // add a to ino

 markUsed(tx, a)

 tx.Commit()

}

method REMOVE(ino) {

 tx := Begin()

 … // get a from ino

 Free(a)

 markFree(tx, a)

 tx.Commit()

}

allocator 
lock

14

Our solution: use allocator only as hint

method WRITE(ino) {

 tx := Begin()

 a := AllocHint()

 if isUsed(tx, a) {

 tx.Abort()

 return ENOSPC

 }

 … // use a as before

 tx.Commit()

}

No lock is held after AllocHint call

Rely on-disk allocator as source of truth

14

Our solution: use allocator only as hint

method WRITE(ino) {

 tx := Begin()

 a := AllocHint()

 if isUsed(tx, a) {

 tx.Abort()

 return ENOSPC

 }

 … // use a as before

 tx.Commit()

}

No lock is held after AllocHint call

Rely on-disk allocator as source of truth

15

AllocHint has spec that is sound in a transaction

method WRITE(ino) {

 tx := Begin()

 a := AllocHint()

 if isUsed(tx, a) {

 tx.Abort()

 return ENOSPC

 }

 … // use a as before

 tx.Commit()

}

Simulation-transfer theorem explicitly
allows AllocHint and Free

16

Evaluation

17

Evaluation results

GoTxn reduces proof burden

Bugs found in unverified code and specification

Good performance compared to Linux

18

DaisyNFS

GoTxn

Code

4,000 (Dafny)

1,600 (Go)

Simulation transfer reduces proof overhead

18

DaisyNFS

GoTxn

Code

4,000 (Dafny)

1,600 (Go)

Proof

6,800 (Dafny)

35,000 (Perennial)

Simulation transfer reduces proof overhead

18

DaisyNFS

GoTxn

Code

4,000 (Dafny)

1,600 (Go)

Proof

6,800 (Dafny)

35,000 (Perennial)

Simulation transfer reduces proof overhead

20x proof:code

2x proof:code

19

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Didn’t find bugs in verified parts

19

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Unverified glue  
code

Missing from 
specification

19

Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Unverified glue  
code

Missing from 
specification

20

Proof had an unintentional precondition

type Ino = ino:uint64 | ino < NUM_INODES

method REMOVE(ino: Ino)

 requires invariant()

Dafny

20

Proof had an unintentional precondition

type Ino = ino:uint64 | ino < NUM_INODES

method REMOVE(ino: Ino)

 requires invariant()

Dafny

method REMOVE(ino: uint64)

 requires invariant()

 requires ino < NUM_INODES

actually means…

20

Proof had an unintentional precondition

type Ino = ino:uint64 | ino < NUM_INODES

method REMOVE(ino: Ino)

 requires invariant()

Dafny

Go code is assumed to 
meet any preconditions

method REMOVE(ino: uint64)

 requires invariant()

 requires ino < NUM_INODES

actually means…

…

fs.REMOVE(req.ino)

…

Go (unverified)

21

Compare against Linux NFS server with ext4

 DaisyNFS

Linux NFS server local ext4

vs

*using data=journal

Linux NFS client
NFS

22

Performance evaluation setup

Hardware: i3.metal instance 
36 cores, fast NVMe drive

Benchmarks:

• smallfile: metadata heavy

• largefile: lots of data

• app: git clone + make

23

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an NVMe disk

23

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an NVMe disk

23

DaisyNFS gets good performance with a single client

0.2

0.4

0.6

0.8

1

1.2

smallfile largefile app

Linux NFS DaisyNFS

1900 files/s

230 MB/s

0.4 runs/s

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an NVMe disk

24

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

Run smallfile with many clients on an NVMe SSD

24

DaisyNFS can take advantage of multiple clients

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

DaisyNFS

Run smallfile with many clients on an NVMe SSD

24

DaisyNFS can take advantage of multiple clients

2800

5600

8400

11200

14000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

DaisyNFS

Linux NFS

Run smallfile with many clients on an NVMe SSD

25

Related work

GoTxn extends GoJournal [OSDI 2021] with two-phase
locking

Flashix [2021] is a verified concurrent file system, does
not use transactions

Isotope [FAST 2016] has an unverified file system using
transactions

26

Conclusion

GoTxn

DaisyNFS

Specification  
for transactions

26

Conclusion

GoTxn

DaisyNFS
DaisyNFS is a verified, concurrent file
system with good performance

Specification  
for transactions

26

Conclusion

GoTxn

DaisyNFS

Simulation-transfer theorem captures how
transactions turn sequential reasoning into
concurrent & crash-safe correctness

DaisyNFS is a verified, concurrent file
system with good performance

Specification  
for transactions

