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File-system correctness is important but challenging

Applications rely on file system to store data


Prone to bugs due to optimizations


Bugs can lead to data loss
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Challenges in verifying a file system

Crashes Concurrency
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Contribution: verification-friendly design

GoTxn

DaisyNFS

Transaction system gives atomicity

File-system code implemented with transactions

Crashes Concurrency

Simulation-transfer theorem turns sequential 
reasoning into concurrent & crash-safe correctness

Sequential reasoning
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System design

func handleCommand(req) {

  switch req.cmd {

    case MKDIR: fs.MKDIR(…)

    case LOOKUP: fs.LOOKUP(…)

    …

  }

}

Go (unverified)
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System design

func handleCommand(req) {

  switch req.cmd {

    case MKDIR: fs.MKDIR(…)

    case LOOKUP: fs.LOOKUP(…)

    …

  }

}

Go (unverified)

method MKDIR(d_ino, name)

method LOOKUP(d_ino, name)

  returns (ino:Ino)

…

Dafny (verified)
tx := Begin()

tx.Read(…)

tx.Write(…)

tx.Commit()

Go (verified)
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DaisyNFS’s top-level correctness theorem

MKDIR(…) LOOKUP(…)

Go (code)

NFS (spec)

MKDIR LOOKUP

Every daisy-nfsd execution

should have corresponding 
atomic execution in spec

MKDIRLOOKUP

MKDIR

…

…



9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec



9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant



9

Transactions are proven with sequential reasoning

GoTxn

NFS

MKDIR code LOOKUP code

MKDIR spec LOOKUP spec

invariant

Sequential reasoning 
has low proof overhead
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Simulation-transfer theorem

GoTxn

NFS

MKDIR code

MKDIR spec

input: forward simulation for 
every operation

Go

…

output: concurrent, crash-safe refinement

NFS

MKDIR LOOKUP

MKDIRLOOKUP

MKDIR

…
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Proof: compose GoTxn and DaisyNFS proofs

MKDIR(…) LOOKUP(…)

Go

NFS

MKDIR LOOKUP

transactions are atomic

(GoTxn proof)

GoTxn API

sequential transactions 
are correct

(DaisyNFS proof)
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Theorem needs some assumptions for atomicity

All shared state must go through the transaction system
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Theorem needs some assumptions for atomicity

All shared state must go through the transaction system

Challenge: how to integrate in-memory allocator state 
(for performance reasons)?
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Naive in-memory allocator would be slow

method WRITE(ino) {

  tx := Begin()

  a := Alloc()

  … // add a to ino

  markUsed(tx, a)

  tx.Commit()

}

method REMOVE(ino) {

  tx := Begin()

  … // get a from ino

  Free(a)

  markFree(tx, a)

  tx.Commit()

}
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Our solution: use allocator only as hint

method WRITE(ino) {

  tx := Begin()

  a := AllocHint()

  if isUsed(tx, a) {

    tx.Abort()

    return ENOSPC

  }

  … // use a as before

  tx.Commit()

}

No lock is held after AllocHint call


Rely on-disk allocator as source of truth
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AllocHint has spec that is sound in a transaction

method WRITE(ino) {

  tx := Begin()

  a := AllocHint()

  if isUsed(tx, a) {

    tx.Abort()

    return ENOSPC

  }

  … // use a as before

  tx.Commit()

}

Simulation-transfer theorem explicitly 
allows AllocHint and Free



16

Evaluation
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Evaluation results

GoTxn reduces proof burden


Bugs found in unverified code and specification


Good performance compared to Linux
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DaisyNFS

GoTxn

Code

4,000 (Dafny)

1,600 (Go)

Proof

6,800 (Dafny)

35,000 (Perennial)

Simulation transfer reduces proof overhead

20x proof:code

2x proof:code
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Bugs found in unverified code and spec

XDR decoder for strings can allocate 232 bytes

File handle parser panics if wrong length

Panic on unexpected enum value

WRITE panics if not enough input bytes

Directory REMOVE panics in dynamic type cast

The names “.” and “..” .. are allowed

RENAME can create circular directories

CREATE/MKDIR allow empty name

Proof assumes caller provides bounded inode

RENAME allows overwrite where spec does not

Didn’t find bugs in verified parts
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Proof had an unintentional precondition

type Ino = ino:uint64 | ino < NUM_INODES


method REMOVE(ino: Ino)

  requires invariant()

Dafny

Go code is assumed to 
meet any preconditions

method REMOVE(ino: uint64)

  requires invariant()

  requires ino < NUM_INODES

actually means…

…

fs.REMOVE(req.ino)

…

Go (unverified)
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Compare against Linux NFS server with ext4

        DaisyNFS

Linux NFS server local ext4

vs

*using data=journal

Linux NFS client
NFS
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Performance evaluation setup

Hardware: i3.metal instance 
36 cores, fast NVMe drive


Benchmarks:


• smallfile: metadata heavy


• largefile: lots of data


• app: git clone + make
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DaisyNFS gets good performance with a single client
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Related work

GoTxn extends GoJournal [OSDI 2021] with two-phase 
locking


Flashix [2021] is a verified concurrent file system, does 
not use transactions


Isotope [FAST 2016] has an unverified file system using 
transactions
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Conclusion

GoTxn

DaisyNFS

Simulation-transfer theorem captures how 
transactions turn sequential reasoning into 
concurrent & crash-safe correctness

DaisyNFS is a verified, concurrent file 
system with good performance

Specification  
for transactions


