
Verifying a high-performance 
crash-safe file system using a 

tree specifica6on
Haogang Chen, Tej Chajed, Stephanie Wang, Alex Konradi, Atalay 

İleri, Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich



File systems are difficult to make correct

• Complicated implementa6ons 
• on-disk layout 

• in-memory data structures 

• Computer can crash at any 6me
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Despite much effort, file systems have bugs

• File systems s6ll have subtle bugs 
• Well documented [Lu, TOS ’14] [Min, SOSP ’15] 

• Example from ext4: 
combina6on of two op6miza6ons allows data to 
leak from one file to another on crash 
• Discovered a[er 6 years [Kara 2014]
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Approach: formal verifica6on

• Write a specifica6on 

• Prove implementa6on meets the specifica6on 
• Ensures implementa6on handles all corner cases 

• Proof assistant (Coq) ensures proof is correct 

• Avoid large class of bugs
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Exis6ng verified file systems
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Goal: verified high-performance file system
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Strawman: op6mize FSCQ
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Problem: specifica6on incompa6ble with high 
performance

• Achieving high performance requires op6miza6ons 

• Some op6miza6ons change file-system behavior 

• Requires changes to specifica6on
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Example op6miza6on: deferred commit

• Deferred commit: buffer system calls un6l fsync 

• FSCQ’s specifica6on: “if create(f) has returned 
and computer crashes, f exists” 

• Deferred commit requires a new specifica6on
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Op6miza6ons that change crash behavior

• Deferred commit: buffer system calls un6l fsync 

• Log-bypass writes: skip log for data writes 

• Buffer cache: cache data un6l fdatasync 

• Exis*ng specifica*ons do not support these 
op*miza*ons
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Contribu6on: DFSCQ file system

• Precise specifica6on for a subset of POSIX 
• supports deferred commit and log-bypass writes 

• Verified, crash-safe file system 
• Tradi6onal journalling file-system design 

• Implements most of ext4’s op6miza6ons 

• Machine-checked proof that implementa6on meets specifica6on 

• Performance on par with ext4 (but DFSCQ has fewer features)
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Specifying a file system

• Design abstract state
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Specifying a file system

• Design abstract state

• Describe how system calls execute
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Specifying a file system

• Design abstract state

• Describe how system calls execute

• Describe effect of crashes
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Star6ng point: tree as abstract state

Trees are a simplified abstrac6on of a file system

13

g
f



Specifica6on abstracts implementa6on details
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Specify how system calls affect abstract state
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Challenges in specifying crash behavior

• Op6miza6ons mean crashes can be complex 

• Problem 1: deferred commit 

• Problem 2: log-bypass writes 

• Problem 3: caching
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Problem 1: deferred commit leads to many 
crash states
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How do we specify crash outcomes with 
deferred commit?
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How do we specify crash outcomes with 
deferred commit?
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tree sequence

Specify deferred commit using tree sequences
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tree sequence

Specify deferred commit using tree sequences

• Abstract state is a sequence of trees
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tree sequence

Specify deferred commit using tree sequences

• Abstract state is a sequence of trees

• Always read from the latest tree
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Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on 

• Always read from the latest tree
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Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on 

• Always read from the latest tree
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Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on 

• Always read from the latest tree
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Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on 

• Always read from the latest tree

23

f

g

ff



Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on 

• Always read from the latest tree
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tree sequence

Behavior of tree sequences on crash 
• What about crash behavior?
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tree sequence

Behavior of tree sequences on crash 
• What about crash behavior?
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Crash specifica6on allows background 
commits
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Specifica6on for fsync
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Problem 2: log-bypass writes may reorder 
updates

• Log-bypass writes: update file data blocks in place, skipping log
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Problem 2: log-bypass writes may reorder 
updates

• Log-bypass writes: update file data blocks in place, skipping log

• Effect: data writes and metadata updates can be reordered on crash
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Log-bypass writes
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Log-bypass writes
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Specify that other files are unaffected
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Specify that other files are unaffected
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Specify that other files are unaffected
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Problem 3: data writes are cached
• Write-back buffer cache
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Problem 3: data writes are cached
• Write-back buffer cache

• Data can be persisted in any order
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Specifying data caching: block sets
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Behavior of block sets on crash
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Behavior of block sets on crash
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Specifica6on for fdatasync
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Specifica6on for fdatasync
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Summary: DFSCQ’s tree-based specifica6on

• metadata opera6ons add a new tree 

• fsync collapses to latest tree 

• writes update blocksets in every tree 

• fdatasync collapses blocksets in every tree
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Prove implementa6on meets specifica6on
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Prove implementa6on meets specifica6on
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Prove implementa6on meets specifica6on
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Prove implementa6on meets specifica6on
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DFSCQ Design
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Many single-layer op6miza6ons
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Many single-layer op6miza6ons
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Cross-layer op6miza6ons
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Cross-layer op6miza6ons
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Implementa6on and proof

• Extend FSCQ [SOSP ’15] 
• 75,000 lines of Coq (compared to 31,000 in FSCQ)
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Running DFSCQ
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Running DFSCQ
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Performance evalua6on

• Several workloads 
• micro benchmarks 

• applica6on workloads 

• Compare with ext4 in default mode 

• Running on an SSD on a desktop
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(see paper for more results)



DFSCQ is compe66ve with ext4
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DFSCQ is compe66ve with ext4

• DFSCQ s6ll has high CPU overhead compared to ext4 

• Haskell code allocates large amounts of memory
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DFSCQ outperforms ext4 on mailbench
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DFSCQ outperforms ext4 on mailbench
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• mailbench simulates a qmail-like mail server 

• metadata and fsync-heavy workload



SQLite on DFSCQ is compe66ve with ext4
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SQLite on DFSCQ is compe66ve with ext4

49
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• Write-heavy database workload 

• DFSCQ issues less I/O, but has higher CPU overhead



Future work

• Reduce CPU overhead 

• Concurrency
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Summary

• DFSCQ: verified, efficient, crash-safe file system 
• Precise tree-based specifica*on of 

deferred commit and log-bypass writes 

• Proof that implementa6on meets specifica6on 

• Performance on par with Linux ext4
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hsps://github.com/mit-pdos/fscq

https://github.com/mit-pdos/fscq


Backup slides

• ext4 async commit + log-bypass bug 
• verifica6on architecture diagram 
• write-ahead logging 
• group commit 
• log-bypass writes 
• deferred commit and log-bypass perf 
• spec example 
• fsync(2) 
• atomic write 
• FUSE architecture 
• LOC
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Op6miza6ons are hard to implement correctly

Subtle interac6on between op6miza6ons 

• bug where crash could leak data in Linux ext4 

• discovered a[er 6 years 

ext4 now forbids both op6miza6ons
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Author: Jan Kara <jack@suse.cz> 
Date:   Tue Nov 25 20:19:17 2014 -0500 

    ext4: forbid journal_async_commit in data=ordered mode 

[...]



Approach to avoid bugs: verifica6on
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Write-ahead logging

• System calls can update mul6ple disk blocks
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Write-ahead logging

• System calls can update mul6ple disk blocks

• Logging ensures all updates are persisted or none 
even if computer crashes

55

disk

logdata

create(‘d/a’) (address, block)



disk

Deferred commit enables high throughput
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disk

Deferred commit enables high throughput
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disk

Deferred commit enables high throughput
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1. Buffer system calls in memory
2. fsync() flushes cached transac6ons 

to the on-disk log in a batch



Log-bypass writes avoid doubling data writes
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Log-bypass writes avoid doubling data writes
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Log-bypass writes avoid doubling data writes
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Log-bypass writes avoid doubling data writes
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Deferred commit and log bypass maser in 
prac6ce

58

ext4 performance largefile

synchronous 120 MB/s

+ deferred commit 150 MB/s

+ log-bypass 300 MB/s

fdatasync every 10 MB 
to an SSD



Specifica6ons
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SPEC  unlink(cwd_ino, pathname) 
PRE   disk: tree_rep(tree_seq) 
POST  disk: tree_rep(tree_seq ++ [new_tree]) /\ 
      new_tree = tree_prune(tree_seq.latest, cwd_ino, pathname)  
CRASH disk: tree_intact(tree_seq ++ [new_tree])  



POSIX manual gives complicated specifica6on 

• not clear enough about crash behavior

60

fsync() flushes modified buffer cache pages for fd to the disk 
device so that all changed informa<on can be retrieved even 
a=er the system crashes or is rebooted. fsync() also flushes 
metadata informa<on associated with the file (see inode(7)). 

fdatasync() is similar to fsync(), but does not flush modified 
metadata unless that metadata is needed in order to allow a 
subsequent data retrieval to be correctly handled. 

paraphrase of fsync(2) manpage



Evalua6ng the specifica6on: atomic write 
pasern
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Proved atomic write pasern crash safe
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def atomic_write(data, name): 
  with open(tmpfile, "cw") as f: 
    ftruncate(f, len(data)) 
    write(f, data) 
    fdatasync(f) 
  rename(tmpfile, name) 
  fsync(dirname(name))

prepare tmpfile

persist data
move to des6na6on
persist metadata



Proved atomic write pasern crash safe
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def atomic_write(data, name): 
  with open(tmpfile, "cw") as f: 
    ftruncate(f, len(data)) 
    write(f, data) 
    fdatasync(f) 
  rename(tmpfile, name) 
  fsync(dirname(name))

prepare tmpfile

persist data
move to des6na6on
persist metadata

Specifica6on is sufficient to prove 
applica6on-level proper6es



Atomic write is correct
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/tmp
name

Specifica6on: on crash, name either does not exist 
or contains data

/tmp
name

crash states:

(just a[er rename)



DFSCQ runs ordinary Linux programs using 
FUSE

64

DFSCQ FUSE 
server

userspace

Linux kernel

$ mv src dst 
$ git clone

FUSE



Effort to implement DFSCQ
• Total of 75,000 lines of verified code, specs, and proofs in Coq 

• Compared to FSCQ’s 31,000 lines 

• 4,800 lines of implementa6on 

• Took 5 authors 2 years (but less than 10 person years)
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35%
CHL infrastructure
FS impl and proofs
Top-level API
Tree sequences


