
Verifying a high-performance
crash-safe file system using a

tree specifica6on
Haogang Chen, Tej Chajed, Stephanie Wang, Alex Konradi, Atalay

İleri, Adam Chlipala, M. Frans Kaashoek, Nickolai Zeldovich

File systems are difficult to make correct

• Complicated implementa6ons
• on-disk layout

• in-memory data structures

• Computer can crash at any 6me

2

Despite much effort, file systems have bugs

• File systems s6ll have subtle bugs
• Well documented [Lu, TOS ’14] [Min, SOSP ’15]

• Example from ext4: 
combina6on of two op6miza6ons allows data to
leak from one file to another on crash
• Discovered a[er 6 years [Kara 2014]

3

Approach: formal verifica6on

• Write a specifica6on

• Prove implementa6on meets the specifica6on
• Ensures implementa6on handles all corner cases

• Proof assistant (Coq) ensures proof is correct

• Avoid large class of bugs

4

Exis6ng verified file systems

5

FSCQ [SOSP ’15]
BilbyFS [ASPLOS ’16]
Yggdrasil [OSDI ’16]

ext4
btrfs
ZFS

correctness

performance

verified file systems

Goal: verified high-performance file system

6

FSCQ [SOSP ’15]
BilbyFS [ASPLOS ’16]
Yggdrasil [OSDI ’16]

ext4
btrfs
ZFS

correctness

performance

?

verified file systems

Strawman: op6mize FSCQ

7

correctness

performance

FSCQ code

Strawman: op6mize FSCQ

7

correctness

performance

FSCQ code

spec

proof

Strawman: op6mize FSCQ

7

correctness

performance

FSCQ code

spec

proof

fast FSCQ

proof?

Problem: specifica6on incompa6ble with high
performance

• Achieving high performance requires op6miza6ons

• Some op6miza6ons change file-system behavior

• Requires changes to specifica6on

8

Example op6miza6on: deferred commit

• Deferred commit: buffer system calls un6l fsync

• FSCQ’s specifica6on: “if create(f) has returned
and computer crashes, f exists”

• Deferred commit requires a new specifica6on

9

Op6miza6ons that change crash behavior

• Deferred commit: buffer system calls un6l fsync

• Log-bypass writes: skip log for data writes

• Buffer cache: cache data un6l fdatasync

• Exis*ng specifica*ons do not support these
op*miza*ons

10

Contribu6on: DFSCQ file system

• Precise specifica6on for a subset of POSIX
• supports deferred commit and log-bypass writes

• Verified, crash-safe file system
• Tradi6onal journalling file-system design

• Implements most of ext4’s op6miza6ons

• Machine-checked proof that implementa6on meets specifica6on

• Performance on par with ext4 (but DFSCQ has fewer features)

11

Specifying a file system

• Design abstract state

12

Specifying a file system

• Design abstract state

• Describe how system calls execute

12

Specifying a file system

• Design abstract state

• Describe how system calls execute

• Describe effect of crashes

12

Star6ng point: tree as abstract state

Trees are a simplified abstrac6on of a file system

13

g
f

Specifica6on abstracts implementa6on details

14

g
f abstract state

implementa6on’s
state

Specify how system calls affect abstract state

15

unlink(g)g
f f

unlink(g)

specifica6on describes transi6on

Challenges in specifying crash behavior

• Op6miza6ons mean crashes can be complex

• Problem 1: deferred commit

• Problem 2: log-bypass writes

• Problem 3: caching

16

Problem 1: deferred commit leads to many
crash states

17

unlink(g)g
f f

Problem 1: deferred commit leads to many
crash states

17

unlink(g)g
f f

crash: reset memory

Problem 1: deferred commit leads to many
crash states

17

unlink(g)g
f f

crash: reset memory

g
f

f

How do we specify crash outcomes with
deferred commit?

18

f
g

f

How do we specify crash outcomes with
deferred commit?

18

f
g

f

crash

tree sequence

Specify deferred commit using tree sequences

19

f

g

tree sequence

Specify deferred commit using tree sequences

• Abstract state is a sequence of trees

19

f

g

tree sequence

Specify deferred commit using tree sequences

• Abstract state is a sequence of trees

• Always read from the latest tree

19

f

g

Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on

• Always read from the latest tree

20

unlink(g)

f

g

f

f

g

Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on

• Always read from the latest tree

21

f

g

f

Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on

• Always read from the latest tree

22

truncate(f,2)

f

g

ff

f

g

f

Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on

• Always read from the latest tree

23

f

g

ff

Specify deferred commit using tree sequences

• Metadata updates add new trees in the specifica6on

• Always read from the latest tree

24

f

g

ff

rename(f,/)
f

f

g

ff

tree sequence

Behavior of tree sequences on crash
• What about crash behavior?

25

f

g f

f f

tree sequence

Behavior of tree sequences on crash
• What about crash behavior?

25

f

g post-crash
tree sequence

crash

f

g f

f f

Crash specifica6on allows background
commits

26

post-crash states:

fff

g f

tree sequence
f

g f

f f

crash

Specifica6on for fsync

27

f

g f

f

f

f

fsync("/")

Problem 2: log-bypass writes may reorder
updates

• Log-bypass writes: update file data blocks in place, skipping log

28

f

f
rename

f
write

Problem 2: log-bypass writes may reorder
updates

• Log-bypass writes: update file data blocks in place, skipping log

• Effect: data writes and metadata updates can be reordered on crash

28

f

f
rename

f
write crash

f

Log-bypass writes

29

f

g f

f

At minimum, writes to latest tree

f

g f

f f

f

write(f,…)

Log-bypass writes

30

Affects the same file in earlier trees

f

g f

f f

f

g f

f f

write(f,…)

Specify that other files are unaffected

31

f

g f

f

Puts an obliga6on on the implementa6on to avoid block re-use
within a tree sequence

b21

b21 b21

f

g f

f f

f

?
write(f,…)

Specify that other files are unaffected

32

f

g f

f

b21

b21

f

g f

f f

f

Puts an obliga6on on the implementa6on to avoid block re-use
within a tree sequence

write(f,…)

b21

Specify that other files are unaffected

32

f

g f

f

b21

b21
b51

f

g f

f f

f

Puts an obliga6on on the implementa6on to avoid block re-use
within a tree sequence

write(f,…)

b21
b51

Problem 3: data writes are cached
• Write-back buffer cache

33

f f
write

fcrash

Problem 3: data writes are cached
• Write-back buffer cache

• Data can be persisted in any order

33

f f
write

f

f

f

crash

f

Specifying data caching: block sets

34

f

g

f

uncached

two possible values: old () and new ()

f

f

f

Behavior of block sets on crash

ff

g f

f

f

g

f f

crash

Behavior of block sets on crash

ff

g f

f

f

g

f

f

f

f

f

two degrees of non-determinism in crash states:

crash

Behavior of block sets on crash

ff

g f

f

f

g

f

f

f

f

fspecifica6on allows
metadata and data updates
to be reordered

two degrees of non-determinism in crash states:

crash

Specifica6on for fdatasync

37

f

g

f

f

f

fdatasync(f)

Specifica6on for fdatasync

38

f

g

f

f

fdatasync(f)

f

g

f

f

fdatasync specifica6on says block sets collapse in every tree

f

f

Summary: DFSCQ’s tree-based specifica6on

• metadata opera6ons add a new tree

• fsync collapses to latest tree

• writes update blocksets in every tree

• fdatasync collapses blocksets in every tree

39

Prove implementa6on meets specifica6on

40

length: 2
type: file
…

stat(g)g
f

g
f

length: 2
type: file
…

stat(g)

Prove implementa6on meets specifica6on

40

length: 2
type: file
…

stat(g)g
f

return values match

g
f

length: 2
type: file
…

stat(g)

Prove implementa6on meets specifica6on

40

unlink(g)

length: 2
type: file
…

stat(g)g
f

return values match

g
f

g
f f

length: 2
type: file
…

stat(g) unlink(g)

Prove implementa6on meets specifica6on

40

unlink(g)

length: 2
type: file
…

stat(g)g
f

return values match
disk con6nues to relate
to abstract state

g
f

g
f f

length: 2
type: file
…

stat(g) unlink(g)

DFSCQ Design

41

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

Many single-layer op6miza6ons

42

• Affect only proof of single layer

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

Many single-layer op6miza6ons

42

• Affect only proof of single layer

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

cache free blocks

Many single-layer op6miza6ons

42

• Affect only proof of single layer

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

improves performance with
no change to abstrac6on

cache free blocks

Cross-layer op6miza6ons

43

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

• Break abstrac6on
boundaries

• Complicate proofs
• Good for performance

Cross-layer op6miza6ons

43

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

• Break abstrac6on
boundaries

• Complicate proofs
• Good for performance

track dirty blocks in the
cache

Cross-layer op6miza6ons

43

buffer cache

logging
checksums

deferred commit
log-bypass API

block allocator
free-bit cache
avoid re-use

inode
k-indirect blocks

dirty blocks

directory
name cache

• Break abstrac6on
boundaries

• Complicate proofs
• Good for performance

records dirent offset from
inode layer

track dirty blocks in the
cache

Implementa6on and proof

• Extend FSCQ [SOSP ’15]
• 75,000 lines of Coq (compared to 31,000 in FSCQ)

44

specifica6on
code

proofs

Coq

OKCoq proof
checker

Running DFSCQ

45

code
Coq

code
extrac6on

implementa6on
Haskell

Running DFSCQ

45

code
Coq

DFSCQ FUSE
server

GHC

code
extrac6on

implementa6on
Haskell

FUSE interface
Haskell

+

Performance evalua6on

• Several workloads
• micro benchmarks

• applica6on workloads

• Compare with ext4 in default mode

• Running on an SSD on a desktop

46

(see paper for more results)

DFSCQ is compe66ve with ext4

47

fil
es

/s

0

80

160

240

320

400

smallfile

FSCQ DFSCQ ext4

DFSCQ is compe66ve with ext4

47

fil
es

/s

0

80

160

240

320

400

smallfile

FSCQ DFSCQ ext4

M
B/

s
0

36

72

108

144

180

largefile
x

DFSCQ is compe66ve with ext4

• DFSCQ s6ll has high CPU overhead compared to ext4

• Haskell code allocates large amounts of memory

47

fil
es

/s

0

80

160

240

320

400

smallfile

FSCQ DFSCQ ext4

M
B/

s
0

36

72

108

144

180

largefile
x

DFSCQ outperforms ext4 on mailbench

48

m
sg

s/
s

0

14

28

42

56

70

mailbench

FSCQ DFSCQ ext4

DFSCQ outperforms ext4 on mailbench

48

m
sg

s/
s

0

14

28

42

56

70

mailbench

FSCQ DFSCQ ext4

• mailbench simulates a qmail-like mail server

• metadata and fsync-heavy workload

SQLite on DFSCQ is compe66ve with ext4

49

tx
ns

/s

0

16

32

48

64

80

TPC-C on SQLite

FSCQ DFSCQ ext4

x

SQLite on DFSCQ is compe66ve with ext4

49

tx
ns

/s

0

16

32

48

64

80

TPC-C on SQLite

FSCQ DFSCQ ext4

x

• Write-heavy database workload

• DFSCQ issues less I/O, but has higher CPU overhead

Future work

• Reduce CPU overhead

• Concurrency

50

Summary

• DFSCQ: verified, efficient, crash-safe file system
• Precise tree-based specifica*on of 

deferred commit and log-bypass writes

• Proof that implementa6on meets specifica6on

• Performance on par with Linux ext4

51

hsps://github.com/mit-pdos/fscq

https://github.com/mit-pdos/fscq

Backup slides

• ext4 async commit + log-bypass bug
• verifica6on architecture diagram
• write-ahead logging
• group commit
• log-bypass writes
• deferred commit and log-bypass perf
• spec example
• fsync(2)
• atomic write
• FUSE architecture
• LOC

52

Op6miza6ons are hard to implement correctly

Subtle interac6on between op6miza6ons

• bug where crash could leak data in Linux ext4

• discovered a[er 6 years

ext4 now forbids both op6miza6ons

53

Author: Jan Kara <jack@suse.cz>
Date: Tue Nov 25 20:19:17 2014 -0500

 ext4: forbid journal_async_commit in data=ordered mode

[...]

Approach to avoid bugs: verifica6on

54

disk hardware

file system

applica6on

specifica6on

specifica*on

verify FS correct

specifica6on

verify applica6ons

Write-ahead logging

• System calls can update mul6ple disk blocks

55

create(‘d/a’) (address, block)

Write-ahead logging

• System calls can update mul6ple disk blocks

• Logging ensures all updates are persisted or none
even if computer crashes

55

disk

logdata

create(‘d/a’) (address, block)

disk

Deferred commit enables high throughput

56

logdata

disk

Deferred commit enables high throughput

56

memory

logdata

1. Buffer system calls in memory

disk

Deferred commit enables high throughput

56

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ rename(‘d/a’, ‘d/b’)

, ,memory

logdata

1. Buffer system calls in memory

disk

Deferred commit enables high throughput

56

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ rename(‘d/a’, ‘d/b’)
➡ fsync(‘d’)

, ,memory

logdata

1. Buffer system calls in memory
2. fsync() flushes cached transac6ons

to the on-disk log in a batch

disk

Deferred commit enables high throughput

56

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ rename(‘d/a’, ‘d/b’)
➡ fsync(‘d’)

memory

logdata

1. Buffer system calls in memory
2. fsync() flushes cached transac6ons

to the on-disk log in a batch

Log-bypass writes avoid doubling data writes

57

disk

logdata

➡ mkdir(‘d’)
➡ create(‘d/a’)

1. Record metadata updates in log as
usual

transacCon
cache ,

Log-bypass writes avoid doubling data writes

57

disk

logdata

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ write(‘d/a’,...)

1. Record metadata updates in log as
usual

transacCon
cache ,

Log-bypass writes avoid doubling data writes

57

disk

logdata

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ write(‘d/a’,...)

1. Record metadata updates in log as
usual

2. Bypass log for file data

transacCon
cache ,

Log-bypass writes avoid doubling data writes

57

disk

logdata

➡ mkdir(‘d’)
➡ create(‘d/a’)
➡ write(‘d/a’,...)

1. Record metadata updates in log as
usual

2. Bypass log for file data

transacCon
cache ,

Deferred commit and log bypass maser in
prac6ce

58

ext4 performance largefile

synchronous 120 MB/s

+ deferred commit 150 MB/s

+ log-bypass 300 MB/s

fdatasync every 10 MB
to an SSD

Specifica6ons

59

SPEC unlink(cwd_ino, pathname) 
PRE disk: tree_rep(tree_seq) 
POST disk: tree_rep(tree_seq ++ [new_tree]) /\
 new_tree = tree_prune(tree_seq.latest, cwd_ino, pathname)
CRASH disk: tree_intact(tree_seq ++ [new_tree])

POSIX manual gives complicated specifica6on

• not clear enough about crash behavior

60

fsync() flushes modified buffer cache pages for fd to the disk
device so that all changed informa<on can be retrieved even
a=er the system crashes or is rebooted. fsync() also flushes
metadata informa<on associated with the file (see inode(7)).

fdatasync() is similar to fsync(), but does not flush modified
metadata unless that metadata is needed in order to allow a
subsequent data retrieval to be correctly handled.

paraphrase of fsync(2) manpage

Evalua6ng the specifica6on: atomic write
pasern

61

f

tmpfile
rename()

Goal: on crash f either:
- doesn’t exist
- or contains

Proved atomic write pasern crash safe

62

def atomic_write(data, name):
 with open(tmpfile, "cw") as f:
 ftruncate(f, len(data))
 write(f, data)
 fdatasync(f)
 rename(tmpfile, name)
 fsync(dirname(name))

prepare tmpfile

persist data
move to des6na6on
persist metadata

Proved atomic write pasern crash safe

62

def atomic_write(data, name):
 with open(tmpfile, "cw") as f:
 ftruncate(f, len(data))
 write(f, data)
 fdatasync(f)
 rename(tmpfile, name)
 fsync(dirname(name))

prepare tmpfile

persist data
move to des6na6on
persist metadata

Specifica6on is sufficient to prove
applica6on-level proper6es

Atomic write is correct

63

/tmp
name

Specifica6on: on crash, name either does not exist
or contains data

/tmp
name

crash states:

(just a[er rename)

DFSCQ runs ordinary Linux programs using
FUSE

64

DFSCQ FUSE
server

userspace

Linux kernel

$ mv src dst
$ git clone

FUSE

Effort to implement DFSCQ
• Total of 75,000 lines of verified code, specs, and proofs in Coq

• Compared to FSCQ’s 31,000 lines

• 4,800 lines of implementa6on

• Took 5 authors 2 years (but less than 10 person years)

65

10%

12%

43%

35%
CHL infrastructure
FS impl and proofs
Top-level API
Tree sequences

