
Verifying concurrent Go code in
Coq with Goose

Tej Chajed, Joseph Tassarotti*, Frans Kaashoek, Nickolai Zeldovich
MIT and *Boston College

2

Systems verification, broadly

impl

specification

proof

3

Systems verification requires connecting
implementation to proof

impl

proof

model of
impl

specification

3

Systems verification requires connecting
implementation to proof

impl

proof

this talk

model of
impl

previous [SOSP 2019]

and current work

specification

4

We aim to verify realistic systems

Systems: running code, interacts with outside world

Realistic: reasonably efficient, concurrency

Verification: functional correctness, focus on crash safety

PDOS (the part that does verification)

5

Goal: implement in a systems language

impl model of
impl

(1) write ordinary

imperative code

(3) prove something

about the model

(2) import into Coq

6

Goose: write code in Go and prove with Iris

Why Go (vs. C or Rust)? Simple, good tooling

Why Iris (vs. VST)? Concurrency, extensibility

7

Implementing in Go helps build the software

impl model of
impl

(1a) write ordinary

imperative code

(3) prove something

about the model

(2) import into Coq

(1b) test

(1c) debug

(1d) profile

(1e) benchmark

8

Goose: import subset of Go into a Coq model

Goose

Go

✓ locks

✓fork

✓structs

✓pointers

✗ interfaces

8

Goose: import subset of Go into a Coq model

Goose

Go
goose

translator
✓ locks

✓fork

✓structs

✓pointers

✗ interfaces

Coq

8

Goose: import subset of Go into a Coq model

Goose

Go GooseLang
goose

translator λref,conc with 
external ops✓ locks

✓fork

✓structs

✓pointers

✗ interfaces

Coq

8

Goose: import subset of Go into a Coq model

Goose

Go GooseLang
goose

translator λref,conc with 
external ops✓ locks

✓fork

✓structs

✓pointers

✗ interfaces

Coq

carry out

proofs in Iris

9

Our systems verification research using Goose

Persistent key-value store using file system (unverified)

Mail server using file system (appeared in SOSP ’19)

Concurrent file system using disk (in progress)

10

Go is a systems language

C-like: functions, structs, pointers

Exposes system calls

Efficient runtime (garbage collection, threads)

11

Goose code

Looks like standard Go, but avoids most of the standard
library

Use narrow interfaces for file system or disk

More of Go is supported frequently

12

Challenges in implementing Goose

Defining GooseLang, a semantic model of Go

Translating Go to GooseLang

13

GooseLang, a semantic model of Go

e ::= x | λx. e | e1 e2 // λ-calculus 
 | ref e | !e | e1 ← e2 // heap operations 
 | fork e | cmpxchg // concurrency
 | call op e // external operations

13

GooseLang, a semantic model of Go

e ::= x | λx. e | e1 e2 // λ-calculus 
 | ref e | !e | e1 ← e2 // heap operations 
 | fork e | cmpxchg // concurrency
 | call op e // external operations

13

GooseLang, a semantic model of Go

e ::= x | λx. e | e1 e2 // λ-calculus 
 | ref e | !e | e1 ← e2 // heap operations 
 | fork e | cmpxchg // concurrency
 | call op e // external operations

v ::= U64 x | Loc z | … // literals
 | Pair | InjL | InjR // sums, products

14

Excerpt from GooseLang: 
slices

ptr

len

x = (ptr, len)
… Definition sliceAppend :=

 λ s, x.
 let s’ := alloc (s.len + #1) () in
 … (* fill s’ *)
 (s’, s.len + #1).

Coq

14

Excerpt from GooseLang: 
slices

func example(x []uint64) {
 x1 := x[1]
 append(x, 5)
}

Definition example :=
 λ x.
 let x1 := !(x.ptr +ₗ #1) in
 sliceAppend x #5;;
 #().

ptr

len

x = (ptr, len)
… Definition sliceAppend :=

 λ s, x.
 let s’ := alloc (s.len + #1) () in
 … (* fill s’ *)
 (s’, s.len + #1).

goose

Go
Coq

15

Excerpt from GooseLang: 
modeling concurrency and locking

func coin() bool {
 m := new(sync.Mutex)
 x := new(bool)
 go func() {
 m.Lock()
 *x = true
 m.Unlock()
 }()
 m.Lock()
 v := *x
 m.Unlock()
 return v

15

Excerpt from GooseLang: 
modeling concurrency and locking

Definition coin: val :=
 λ <>.
 let: “m” := lock.new #() in
 let: “x” := ref #(zero_val boolT) in
 fork (lock.acquire “m”;;
 “x” ← #true;;
 lock.release “m”);;
 lock.acquire “m”;;
 let: “v” := !”x” in
 lock.release “m”;;
 “v”.

func coin() bool {
 m := new(sync.Mutex)
 x := new(bool)
 go func() {
 m.Lock()
 *x = true
 m.Unlock()
 }()
 m.Lock()
 v := *x
 m.Unlock()
 return v

goose

16

Excerpt from GooseLang: 
modeling concurrency and locking

Definition coin: val :=
 λ <>.
 let: “m” := lock.new #() in
 let: “x” := ref #(zero_val boolT) in
 fork (lock.acquire “m”;;
 “x” ← #true;;
 lock.release “m”);;
 lock.acquire “m”;;
 let: “v” := !”x” in
 lock.release “m”;;
 “v”.

func coin() bool {
 m := new(sync.Mutex)
 x := new(bool)
 go func() {
 m.Lock()
 *x = true
 m.Unlock()
 }()
 m.Lock()
 v := *x
 m.Unlock()
 return v

goose

17

Excerpt from GooseLang: 
modeling concurrency and locking

Definition coin: val :=
 λ <>.
 let: “m” := lock.new #() in
 let: “x” := ref #(zero_val boolT) in
 fork (lock.acquire “m”;;
 “x” ← #true;;
 lock.release “m”);;
 lock.acquire “m”;;
 let: “v” := !”x” in
 lock.release “m”;;
 “v”.

func coin() bool {
 m := new(sync.Mutex)
 x := new(bool)
 go func() {
 m.Lock()
 *x = true
 m.Unlock()
 }()
 m.Lock()
 v := *x
 m.Unlock()
 return v

goose

18

Excerpt from GooseLang: 
modeling concurrency and locking

Definition coin: val :=
 λ <>.
 let: “m” := lock.new #() in
 let: “x” := ref #(zero_val boolT) in
 fork (lock.acquire “m”;;
 “x” ← #true;;
 lock.release “m”);;
 lock.acquire “m”;;
 let: “v” := !”x” in
 lock.release “m”;;
 “v”.

func coin() bool {
 m := new(sync.Mutex)
 x := new(bool)
 go func() {
 m.Lock()
 *x = true
 m.Unlock()
 }()
 m.Lock()
 v := *x
 m.Unlock()
 return v

goose

19

Challenge in modeling Go: weak memory
func uhOh(x *uint64) {
 go func() {
 *x = 1
 print(“set x”)
 }()
 print(“x=”, *x)
}

Definition uhOh: val :=
 λ x.
 fork (x ← #1
 print “set x” !x);;
 print “x=” !x.

x86-TSO
Sequential consistency

goose

If we first see “set x”, then

19

Challenge in modeling Go: weak memory
func uhOh(x *uint64) {
 go func() {
 *x = 1
 print(“set x”)
 }()
 print(“x=”, *x)
}

Definition uhOh: val :=
 λ x.
 fork (x ← #1
 print “set x” !x);;
 print “x=” !x.

x86-TSO
Sequential consistency

goose

If we first see “set x”, then
sequential consistency means x=1

✓

19

Challenge in modeling Go: weak memory
func uhOh(x *uint64) {
 go func() {
 *x = 1
 print(“set x”)
 }()
 print(“x=”, *x)
}

Definition uhOh: val :=
 λ x.
 fork (x ← #1
 print “set x” !x);;
 print “x=” !x.

x86-TSO
Sequential consistency

goose

If we first see “set x”, then
sequential consistency means x=1
but TSO allows x=0

✗
✓

19

Challenge in modeling Go: weak memory
func uhOh(x *uint64) {
 go func() {
 *x = 1
 print(“set x”)
 }()
 print(“x=”, *x)
}

Definition uhOh: val :=
 λ x.
 fork (x ← #1
 print “set x” !x);;
 print “x=” !x.

x86-TSO
Sequential consistency

goose

If we first see “set x”, then
sequential consistency means x=1
but TSO allows x=0

✗
✓

20

Disallow racy loads and stores

Track in-progress stores

Concurrent store/store and load/store are undefined

Definition Store: val :=
 λ p, v. BeginStore p;;
 FinishStore p v.
Notation “p ← v” := (Store p v).

21

Compatibility with Iris gives us amazing
verification technology

Concurrent separation logic with higher-order ghost state

Iris Proof Mode (IPM) for interactive proofs

21

Compatibility with Iris gives us amazing
verification technology

Concurrent separation logic with higher-order ghost state

Iris Proof Mode (IPM) for interactive proofs

Connect to our unwritten POPL 2021 paper for crash safety

22

Proofs using non-atomic memory

{p ↦ v}
!p

{λv . p ↦ v}

{p ↦ v0}
p ← v

{p ↦ v}

These triples are sound because

 is exclusive access to p ↦ v p

Load (non-atomic) Store

22

Proofs using non-atomic memory

{p ↦ v}
!p

{λv . p ↦ v}

{p ↦ v0}
p ← v

{p ↦ v}

These triples are sound because

 is exclusive access to p ↦ v p

exclude using locks

exclude by using local variables

Load (non-atomic) Store

23

GooseLang programs can make system calls

Import disk.

Definition Copy: val :=
 λ_.
 let b := call ReadOp #0 in
 call WriteOp (#1, b).

import “github.com/tchajed/goose/
machine/disk"

func Copy() {
 b := disk.Read(0)
 disk.Write(1, b)
}

Language is parameterized by external calls

Currently implementing GooseLang + file-system ops in
terms of GooseLang + disk ops

goose

http://github.com/tchajed/goose/machine/disk
http://github.com/tchajed/goose/machine/disk
http://github.com/tchajed/goose/machine/disk

24

Semantics of GooseLang

Small-step operational semantics, mostly standard and
following design of HeapLang

For testing, have executable semantics (interpreter +
soundness proof)

25

Previous approach: shallow embedding as
semantic model

GooseLang was a free monad instead of a λ-calculus

Go code had to explicitly sequence effectful operations

Pure operations were expressed directly in Gallina

26

GooseLang is a mix of shallow and deep
embedding

Heap operations, concurrency are deeply represented

Data structures are shallowly built out of sums

27

Goose translator

2.5k lines of Go

Implemented using go/ast and go/types

Single pass, per function

28

Goose translator supports enough Go

multiple return values

early return

for loops

slice and map iteration

panic

struct field pointers

struct literals

slice element pointers

sub-slicing

pointers to local variables

mutexes and cond vars

goroutines

++ and +=

uint64, uint32, bytes

bitwise ops

29

Goose supports more of Go whenever 
Frans and Nickolai need something

my advisors

✓Multiple packages
✓First-class functions
✓Interfaces and type casts

29

Goose supports more of Go whenever 
Frans and Nickolai need something

my advisors

✓Multiple packages
✓First-class functions
✓Interfaces and type casts
✗ Channels

29

Goose supports more of Go whenever 
Frans and Nickolai need something

my advisors

✓Multiple packages
✓First-class functions
✓Interfaces and type casts
✗ Channels
✗ Control flow like return from loop, defer

30

Making the goose translator sound

Simple and syntactic translation

Make mistakes result in undefined behavior

Basic type checking catches many mistakes

Hand-audited integration tests

31

Related work

Extraction

VST and CompCert

RustBelt

32

Ongoing work

Scaling Goose: handling a large, efficient program

Testing: using executable semantics to test translator

33

Conclusion

Goose is a new approach to concurrent
systems verification: imports Go into Coq

Actively using it for current research

Come talk to us!

Goose

Go GooseLang

goose

Tej and Joe are at CoqPL

https://github.com/tchajed/goose

https://github.com/tchajed/goose

