
Verifying concurrent Go code in Coq with Goose
Tej Chajed
MIT CSAIL

Joseph Tassarotti
Boston College

M. Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Abstract
This paper describes Goose, a system for writing code in Go
and translating it to a model in Coq. The Coq model plugs
into Iris for concurrency proofs, giving an end-to-end system
for writing and verifying concurrent systems. We have used
Goose as part of our work on Perennial to verify a concurrent,
crash-safe mail server that gets good performance.

1 Introduction
This paper describes Goose, a subset of Go, a model of Goose
in Coq, and a translator from Goose programs to the Coq
model. The workflow for the developer is to write a program
in Goose (which is just Go code, with some restrictions),
translate it to Coq, and then finally to write a proof on top of
the model using Iris [3]. We used Goose in Perennial [1] to
verify a concurrent, crash-safe mail server. We’ve also writ-
ten several other systems in Goose but which we haven’t
verified, including a persistent key-value store and a concur-
rent write-ahead log.
We developed Goose after struggling to get good perfor-

mance using extraction. In our previous verified systems,
we typically implemented the system in a shallow, monadic
embedding in Coq, which could be extracted and run with an
interpreter for the impure operations. This approach worked
well, but offers little control over the generated code. When
we started working on concurrency, it was difficult to get
any speedup from multiple cores using extracted code and
the Haskell concurrent runtime, neither of which were opti-
mized for multicore scalability (for example, allocating more
memory creates more work for the garbage collector, which
doesn’t have good multicore scalability).

2 Coq model
We use a shallow, monadic embedding in Coq to represent
Goose programs. The Goose translator emits a Coq term
of type proc T. This inductive type is shown in Figure 1.
The Call constructor represents calling a primitive impure
operation of Go (eg, reading and writing pointers, maps,
and slices). We use monadic Ret and Bind constructors to
sequence operations using arbitrary Gallina code. Finally, to
support concurrency we include a Spawn operation to create
threads. Goose places a tight syntactic restriction that every

CoqPL’2020, January 25, 2020, New Orleans, LA, USA
2019.

Inductive proc : Type -> Type :=
| Call {T} (op: Op T): proc T
| Ret {T} (v: T): proc T
| Bind {T T’} (p1: proc T’)

(p2: T’ -> proc T): proc T
| Loop {T R} (body: T -> proc (LoopOutcome T R))

(init: T): proc R
| Spawn T (p: proc T): proc unit.

Figure 1. Shallow representation of Goose programs.

variable is assigned only once; this means that sequencing in
Go can be modeled with the pure sequencing of Bind. This
trick greatly simplifies the model, since we don’t need to
model creating and loading variables and only need to write
the semantics for impure heap and file-system operations.
Loops typically carry some state from one iteration to the
next, so Goose has special support for a particular for-loop
pattern. Whenever these limitations are too restrictive, the
programmer can always allocate on the heap and load and
store with the newly-created pointer.

This representation of programs refers to primitives with
the Call constructor, which we separately give a semantics
as a transition relation. These relations happen to be written
using relation combinators, but this isn’t essential to the
approach and any Coq relation would work.
Using a shallow embedding has several advantages: we

do not have to define substitution, and during proofs, we
can simplify some terms by reducing them. However, it also
had some disadvantages. One feature the shallow embedding
cannot express is pointers to struct fields, since structs are
represented as Coq records (see §3.3). Another disadvantage
is that the shallow embedding isn’t natively supported by
Iris (which supports arbitrary languages, as long as they use
a deeply-embedded representation). To fix these issues, we
have begun experimenting with a deep embedding; we’ve
made progress in this direction which will be part of the talk.

3 Implementation
The Goose translator goes through some trouble to make
sure the translation and semantics accurately captures Go.
This section describes some subtleties we addressed.



CoqPL’2020, January 25, 2020, New Orleans, LA, USA T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

3.1 Parsing Go
The translator is implemented in Go, which means it can use
the go/ast package to load and represent Go. Using the offi-
cial support (the same packages used by many Go static anal-
ysis tools) gives us confidence that the parsing code is correct,
which is important since the Go compiler and Goose transla-
tor should agree on what the source code means. We’re also
able to use go/types to get types that disambiguate what
the syntax means in a couple places. Without official support
it would be quite painful to parse Go, let alone type-check it;
with these packages, the Goose translator is quite concise.

3.2 Using a typed model
After Goose emits some Coq code, Coq also has to type-check
it. The proc T term representing a program has a type index,
which enforces that terms always satisfy some basic type
discipline.
Another subtlety in the Coq model is the need to se-

quence impure expressions. For example, the semantics of
f() + g() depends on the order the two function calls are
evaluated in. The translator does not sequence impure state-
ments within expressions, so the programmer must do so,
e.g. writing a := f(); b := g(); return a + b. If the
program violates this sequencing discipline, then the Coq
translation won’t type check, since a proc T isn’t the same
as a T. This limitation isn’t fundamental, but it avoids any
reasoning about evaluation order.

3.3 Custom Datatypes
Goose supports Go struct types by translating into a Coq
record type. For example, the following Go code defines a
struct containing a file handle and a map:

type Table struct {
Index map[uint64]uint64
File filesys.File

}

This is translated to a record in Coq, which is wrapped into
a Coq module to provide namespacing:

Module Table.
Record t := mk {

Index: Map uint64;
File: File;

}.
End Table.

3.4 Modeling shared memory
Goose clearly needs a semantics for operations on pointers to
be useful. However, modeling Go’s shared memory support
requires some care to handle weak memory: the Go memory
model [2] specifies that accessing data simultaneously from
multiple goroutines (lightweight threads) requires serializa-
tion, for example using locks. As long as the code follows
these requirements, Go can use efficient loads and stores and

yet ensure threads observe sequential consistency on top of
a weak memory model like x86-TSO.

Goose enforces serialized access to shared data (pointers,
slices, and maps) by making racy access to the same data
undefined behavior. A race is formally defined as any in-
stance of unordered accesses to the same object where at
least one is a write. The Goose semantics identifies races
by modeling writes, such as a store *p = v, as two atomic
operations, a start and an end, and makes it undefined be-
havior for a procedure to ever overlap a write with another
operation on the same pointer. When we use the Goose se-
mantics for proofs in Perennial, we prove that the code never
triggers undefined behavior, so verified code really does get
a sequentially-consistent view of memory.

Reasoning about these split write operations turns out to
be easy in Iris. On top of the Goose semantics we prove the
usual Hoare triples for reading and writing memory. This is
only possible because the capability for accessing a pointer,
written p 7→n v , represents exclusive access to the pointer p;
threads obtain this exclusive access either by allocating a new
pointer and not sharing it, or by mediating access with locks.
We use a variant of the same idea to model hashmap iteration,
which has a similar problem with iterator invalidation.

3.5 Unsupported features of Go
Notable features that are present in Go but not modeled in
Goose include channels, interfaces, and first-class functions.
These features would be difficult to model for little gain,
given the low-level systems we want to use Goose for in
practice.

4 Future work
We’re working on porting Goose to work with a deep embed-
ding. The approach re-uses the Iris “heap language”, a simple
lambda calculus with heap operations and concurrency. This
model has made it easier to extend Goose to include most
ordinary Go code, and natively integrates with Iris’s pro-
gram logic library. However, we don’t have experience yet
to compare proving on top of this model versus the shallow
embedding; by the time of the talk we will have more to
report.

It would be great to disentangle Goose, concurrency, Iris,
and crash-safety. Our use case for Goose involved crash
safety, but it’s not essential to make this approach useful.
Similarly we are currently using Goose for concurrent sys-
tems, but it could also be applied to sequential code with a
program logic implemented without Iris.

5 Conclusion
Goose is a system to verify concurrent systems written in Go,
which gives low-level control and good performance. You can
find the implementation, examples, and more documentation
at https://github.com/tchajed/goose.

https://github.com/tchajed/goose


Verifying concurrent Go code in Coq with Goose CoqPL’2020, January 25, 2020, New Orleans, LA, USA

References
[1] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zeldovich. Verifying

concurrent, crash-safe systems with perennial. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), Huntsville,
Ontario, Canada, Oct. 2019.

[2] Google. The Go memory model, May 2014. URL https://golang.org/ref/
mem.

[3] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and L. Birkedal.
The essence of higher-order concurrent separation logic. In Proceedings
of the 26th European Symposium on Programming Languages and Systems,
pages 696–723, Uppsala, Sweden, Apr. 2017.

https://golang.org/ref/mem
https://golang.org/ref/mem

	Abstract
	1 Introduction
	2 Coq model
	3 Implementation
	3.1 Parsing Go
	3.2 Using a typed model
	3.3 Custom Datatypes
	3.4 Modeling shared memory
	3.5 Unsupported features of Go

	4 Future work
	5 Conclusion
	References

