
Verifying concurrent, crash-safe
systems with Perennial

Tej Chajed, Joseph Tassarotti*, Frans Kaashoek, Nickolai Zeldovich
MIT and *Boston College

2

Many systems need concurrency and crash safety

Examples: file systems, databases, and key-value stores

Make strong guarantees about keeping your data safe

Achieve high performance with concurrency

3

Simple example: replicated disk

replicated disk library

disk 1 disk 2

3

Simple example: replicated disk

replicated disk library

disk 1

read/write

disk 2

3

Simple example: replicated disk

replicated disk library

disk 1

read/write

disk 2

4

Replicated disk is subtle
func write(a: addr, v: block) {
 lock_address(a)
 d1.write(a, v)
 d2.write(a, v)
 unlock_address(a)
}

4

Replicated disk is subtle
func write(a: addr, v: block) {
 lock_address(a)
 d1.write(a, v)
 d2.write(a, v)
 unlock_address(a)
}

what if system crashes here?
what if disk 1 fails?

4

Replicated disk is subtle
func write(a: addr, v: block) {
 lock_address(a)
 d1.write(a, v)
 d2.write(a, v)
 unlock_address(a)
}

// runs on reboot
func recover() {
 for a in … {
 // copy from d1 to d2
 }
}

what if system crashes here?
what if disk 1 fails?

4

Replicated disk is subtle
func read(a: addr): block {
 lock_address(a)
 v, ok := d1.read(a)
 if !ok {
 v, _ = d2.read(a)
 }
 unlock_address(a)
 return v
}

func write(a: addr, v: block) {
 lock_address(a)
 d1.write(a, v)
 d2.write(a, v)
 unlock_address(a)
}

// runs on reboot
func recover() {
 for a in … {
 // copy from d1 to d2
 }
}

what if system crashes here?
what if disk 1 fails?

5

Goal: systematically reason about all executions
with formal verification

6

Existing verification frameworks do not support
concurrency and crash safety

FSCQ [SOSP ’15]
Yggdrasil [OSDI ’16]
DFSCQ [SOSP ’17]
…

CertiKOS [OSDI ’16]
CSPEC [OSDI ’18]
AtomFS [SOSP ’19]
…

verified crash safety verified concurrency

no system can do both

7

Combining verified crash safety and concurrency
is challenging

Crash and recovery can interrupt a critical section

➡ leases

Crash wipes in-memory state

➡ memory versioning

Recovery logically completes crashed threads’ operations

➡ recovery helping

8

Perennial’s techniques address challenges
integrating crash safety into concurrency reasoning

Crash and recovery can interrupt a critical section

➡ leases

Crash wipes in-memory state

➡ memory versioning

Recovery logically completes crashed threads’ operations

➡ recovery helping

8

Perennial’s techniques address challenges
integrating crash safety into concurrency reasoning

Crash and recovery can interrupt a critical section

➡ leases

Crash wipes in-memory state

➡ memory versioning

Recovery logically completes crashed threads’ operations

➡ recovery helpingthis talk

see paper

9

Contributions

Perennial: framework for reasoning about crashes and
concurrency

Goose: reasoning about Go implementations

Evaluation: verified mail server written in Go with Perennial

see paper

10

Specifying correctness:
concurrent recovery refinement

All operations are correct and atomic wrt
concurrency and crashes

Recovery repairs system after reboot

Proving the replicated disk correct

11

Background

12

Proving refinement with forward simulation:
relate code and spec states

σ

d1

d2

spec

code

Background

13

Proving refinement with forward simulation:
prove every operation has a commit point

write(a, v)
tid:

lock d1.write d2.write unlock

1. Write down abstraction relation
between code and spec states

S1

C1 C2 C3 C4 C5

spec

code

Background

13

Proving refinement with forward simulation:
prove every operation has a commit point

write(a, v)
tid:

write(a, v)
tid:

lock d1.write d2.write unlock

1. Write down abstraction relation
between code and spec states

2. Prove every operation commits

S1 S2

C1 C2 C3 C4 C5

spec

code

Background

13

Proving refinement with forward simulation:
prove every operation has a commit point

write(a, v)
tid:

write(a, v)
tid:

lock d1.write d2.write unlock

1. Write down abstraction relation
between code and spec states

2. Prove every operation commits
3. Prove abstraction relation is

preserved

S1 S2

C1 C2 C3 C4 C5

spec

code

14

Abstraction relation for the replicated disk

abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]
(if the disk has not failed)

σ

d1

d2

15

Crashing breaks the abstraction relation

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

lock reverts to being free,

but disks are not in-sync

abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]

16

So far: abstraction relation always holds

R R
?

spec

code

R abstraction relation

crash

17

Separate a crash invariant from the abstraction
relation

R R C

R abstraction relation
C crash invariant

spec

code
crash

18

Recovery proof uses the crash invariant to restore
the abstraction relation

R R

crash

C

recover()

R R

crash
spec

code

R abstraction relation
C crash invariant

19

Proving recovery correct: makes writes atomic

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

}

20

User sees an atomic write due to recovery

code execution

user’s view (spec)

crash

write(a, v)
tid:

pending

spec operation

20

User sees an atomic write due to recovery

tid:

crash

w1(a,v)code execution

user’s view (spec)

crash

write(a, v)
tid:

pending

spec operation

20

User sees an atomic write due to recovery

recover()

r1(a) w2(a,v) returntid:

crash

w1(a,v)code execution

user’s view (spec)

crash

write(a, v)
tid:

pending

spec operation

20

User sees an atomic write due to recovery

recover()

r1(a) w2(a,v) returntid:

crash

w1(a,v)code execution

user’s view (spec)

recovery helping crash

write(a, v)
tid:

write(a, v)
tid:

pending

spec operation

21

Recovery helping: recovery can commit writes
from before the crash

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

}

write(a, v)
tid:

write(a, v)
tid:

22

Crash invariant says “if disks disagree, some
thread was writing the value on the first disk”

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

}

crash invariant:
d1[a] ≠ d2[a] ⟹

write(a,)d1[a]
tid:∃tid.

write(a, v)
tid:

write(a, v)
tid:

22

Crash invariant says “if disks disagree, some
thread was writing the value on the first disk”

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

}

crash invariant:
d1[a] ≠ d2[a] ⟹

write(a,)d1[a]
tid:∃tid.

write(a, v)
tid:

write(a, v)
tid:

23

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

}

crash invariant:
d1[a] ≠ d2[a] ⟹

write(a,)d1[a]
tid:∃tid.

write(a, v)
tid:

write(a, v)
tid:

Key idea: crash invariant can refer to interrupted
spec operations

24

Recovery proof shows code restores the abstraction
relation by completing all interrupted writes

func write(a: addr,
 v: block) {

 lock_address(a)
 d1.write(a, v)

func recover() {
 for a in … {
 v, ok := d1.read(a)
 if !ok { … }
 d2.write(a, v)
 }

} crash
abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]

write(a, v)
tid:

write(a, v)
tid:

25

Proving concurrent recovery refinement

Recovery proof uses crash invariant to restore abstraction
relation

Proof can refer to interrupted operations, enabling
recovery helping reasoning

Users get correct behavior and atomicity

26

Implementation

Perennial (9k lines of Coq)
- leases
- memory versioning
- recovery helping

Coq

Iris concurrency framework
this paper

prior work

developer-written

26

Implementation

Perennial (9k lines of Coq)
- leases
- memory versioning
- recovery helping

Coq

Iris concurrency framework

Go source

exe

go build

this paper

prior work

developer-written

26

Implementation

Perennial (9k lines of Coq)
- leases
- memory versioning
- recovery helping

Coq

Iris concurrency framework

Goose translator
(2k lines of Go) Proof

see paper

Go source

exe

go build

this paper

prior work

developer-written

26

Implementation

Perennial (9k lines of Coq)
- leases
- memory versioning
- recovery helping

Coq

Iris concurrency framework

Goose translator
(2k lines of Go) Proof

see paper

Go source

exe

go build
machine
checked by Coq

this paper

prior work

developer-written

27

Evaluation

This talk:

• proof-effort comparison

See paper:

• verified examples

• TCB

• bug discussion

28

Methodology: 
Verify the same mail server as previous work, CSPEC [OSDI ’18]

Users can read, deliver, and delete mail

Implemented on top of a file system

Operations are atomic (and crash safe in Perennial)

29

Perennial mail server was easier to verify 
and proves crash safety

Perennial CSPEC [OSDI ’18]

mail server
proof 3,200 4,000

time 2 weeks

(after framework)

6 months 
(with framework)

code 159 (Go) 215 (Coq)

30

Perennial mail server really is concurrent

0k

50k

100k

150k

200k

1 2 3 4 5 6 7 8 9 10 11 12
cores

requests/sec

(see the paper for details)

31

Conclusion

Perennial introduces crash-safety techniques that extend
concurrent verification in Iris

Goose lets us reason about Go implementations

Verified a Go mail server with less effort than previous work
and proved crash safety

chajed.io/perennial

https://www.chajed.io/perennial

