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Many systems need concurrency and crash safety

Examples: file systems, databases, and key-value stores


Make strong guarantees about keeping your data safe


Achieve high performance with concurrency
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Simple example: replicated disk

replicated disk library
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Replicated disk is subtle
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Goal: systematically reason about all executions 
with formal verification
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Existing verification frameworks do not support 
concurrency and crash safety

FSCQ [SOSP ’15] 
Yggdrasil [OSDI ’16] 
DFSCQ [SOSP ’17] 
…

CertiKOS [OSDI ’16] 
CSPEC [OSDI ’18] 
AtomFS [SOSP ’19] 
…

verified crash safety verified concurrency

no system can do both
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Combining verified crash safety and concurrency 
is challenging

Crash and recovery can interrupt a critical section

➡ leases


Crash wipes in-memory state

➡ memory versioning


Recovery logically completes crashed threads’ operations

➡ recovery helping
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Perennial’s techniques address challenges 
integrating crash safety into concurrency reasoning

Crash and recovery can interrupt a critical section

➡ leases


Crash wipes in-memory state

➡ memory versioning


Recovery logically completes crashed threads’ operations

➡ recovery helpingthis talk

see paper
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Contributions

Perennial: framework for reasoning about crashes and 
concurrency


Goose: reasoning about Go implementations


Evaluation: verified mail server written in Go with Perennial

see paper
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Specifying correctness: 
concurrent recovery refinement

All operations are correct and atomic wrt 
concurrency and crashes


Recovery repairs system after reboot



Proving the replicated disk correct
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Proving refinement with forward simulation: 
relate code and spec states

σ

d1

d2

spec

code
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Proving refinement with forward simulation: 
prove every operation has a commit point

write(a, v)
tid:

write(a, v)
tid:

lock d1.write d2.write unlock

1. Write down abstraction relation 
between code and spec states

2. Prove every operation commits
3. Prove abstraction relation is 

preserved

S1 S2

C1 C2 C3 C4 C5

spec

code
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Abstraction relation for the replicated disk

abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]
(if the disk has not failed)

σ

d1

d2
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Crashing breaks the abstraction relation

func write(a: addr, 
           v: block) { 

  lock_address(a) 
  d1.write(a, v)

lock reverts to being free,

but disks are not in-sync

abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]
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So far: abstraction relation always holds

R R
?

spec

code

R abstraction relation

crash
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Separate a crash invariant from the abstraction 
relation

R R C

R abstraction relation
C crash invariant

spec

code
crash
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Recovery proof uses the crash invariant to restore 
the abstraction relation

R R

crash

C

recover()

R R

crash
spec

code

R abstraction relation
C crash invariant
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Proving recovery correct: makes writes atomic

func write(a: addr, 
           v: block) { 

  lock_address(a) 
  d1.write(a, v)

func recover() { 
  for a in … { 
    v, ok := d1.read(a) 
    if !ok { … } 
    d2.write(a, v) 
  } 

}
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User sees an atomic write due to recovery

code execution

user’s view (spec)

crash

write(a, v)
tid:

pending

spec operation
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User sees an atomic write due to recovery

recover()

r1(a) w2(a,v) returntid:

crash

w1(a,v)code execution

user’s view (spec)

recovery helping crash

write(a, v)
tid:

write(a, v)
tid:

pending

spec operation



21

Recovery helping: recovery can commit writes 
from before the crash

func write(a: addr, 
           v: block) { 

  lock_address(a) 
  d1.write(a, v)

func recover() { 
  for a in … { 
    v, ok := d1.read(a) 
    if !ok { … } 
    d2.write(a, v) 
  } 

}

write(a, v)
tid:

write(a, v)
tid:
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Crash invariant says “if disks disagree, some 
thread was writing the value on the first disk”
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func write(a: addr, 
           v: block) { 

  lock_address(a) 
  d1.write(a, v) 

func recover() { 
  for a in … { 
    v, ok := d1.read(a) 
    if !ok { … } 
    d2.write(a, v) 
  } 

}

crash invariant:
d1[a] ≠ d2[a] ⟹

write(a, )d1[a]
tid:∃tid.

write(a, v)
tid:

write(a, v)
tid:

Key idea: crash invariant can refer to interrupted 
spec operations
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Recovery proof shows code restores the abstraction 
relation by completing all interrupted writes

func write(a: addr, 
           v: block) { 

  lock_address(a) 
  d1.write(a, v) 

func recover() { 
  for a in … { 
    v, ok := d1.read(a) 
    if !ok { … } 
    d2.write(a, v) 
  } 

} crash
abstraction relation:

!locked(a) ⟹
σ[a] = d1[a]

∧ σ[a] = d2[a]

write(a, v)
tid:

write(a, v)
tid:



25

Proving concurrent recovery refinement

Recovery proof uses crash invariant to restore abstraction 
relation


Proof can refer to interrupted operations, enabling 
recovery helping reasoning


Users get correct behavior and atomicity
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Implementation

Perennial (9k lines of Coq) 
- leases 
- memory versioning 
- recovery helping

Coq

Iris concurrency framework
this paper

prior work

developer-written



26

Implementation

Perennial (9k lines of Coq) 
- leases 
- memory versioning 
- recovery helping

Coq

Iris concurrency framework

Go source

exe

go build

this paper

prior work

developer-written



26

Implementation

Perennial (9k lines of Coq) 
- leases 
- memory versioning 
- recovery helping

Coq

Iris concurrency framework

Goose translator 
(2k lines of Go) Proof

see paper

Go source

exe

go build

this paper

prior work

developer-written



26

Implementation

Perennial (9k lines of Coq) 
- leases 
- memory versioning 
- recovery helping

Coq

Iris concurrency framework

Goose translator 
(2k lines of Go) Proof

see paper

Go source

exe

go build
machine 
checked by Coq

this paper

prior work

developer-written
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Evaluation

This talk:

• proof-effort comparison


See paper:

• verified examples

• TCB

• bug discussion
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Methodology: 
Verify the same mail server as previous work, CSPEC [OSDI ’18]

Users can read, deliver, and delete mail


Implemented on top of a file system


Operations are atomic (and crash safe in Perennial)
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Perennial mail server was easier to verify 
and proves crash safety

Perennial CSPEC [OSDI ’18]

mail server 
proof 3,200 4,000

time 2 weeks

(after framework)

6 months 
(with framework)

code 159 (Go) 215 (Coq)



30

Perennial mail server really is concurrent

0k

50k

100k

150k

200k

1 2 3 4 5 6 7 8 9 10 11 12
cores

requests/sec

(see the paper for details)
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Conclusion

Perennial introduces crash-safety techniques that extend 
concurrent verification in Iris


Goose lets us reason about Go implementations


Verified a Go mail server with less effort than previous work 
and proved crash safety


chajed.io/perennial

https://www.chajed.io/perennial

