Veritying a concurrent, crash-safe file
system with sequential reasoning

Tej Chajed
PhD defense

October 21st 2021

® O

Favorites

23 Dropbox (MIT)

33 Dropbox (Personal)
B3 papers

5 Notability

85 gojournal

B85 daisy-nfs

{a} tchajed

iCloud
< iCloud Drive

(=] Desktop

(Y Documents

Locations

BOOTCAMP

& borel a
<0 brouwer A

{ > daisy-nfs

2 concurrent e system
with proots
~

dafny-jrnl/group-
meeting.key

daisy/ucsd2021
practice.key

Overall
system.pdf

thm1-
statement.png

dafny-jrnl/group-
meeting.pdf

demo-dafny-nfsd
2021-10-14.mov

ror @
Theorem
statements.pdf

thm2-
statement.png

dafny-nfsd-proof-
timing.numbers

demo-dafny-
nfsd-small.mov

o

thesis-defense

thm3-
statement.png

daisy-nfs macOS
demo.mov

demo-dafny-
nfsd.mov

thesis-
defense.scap

5 .,L
MD Q

timeline.md

daisy-nfsd/
0sdi2022.scap

PDF Q

Thm 3
diagram.pdf

verification-demo

daisy/ucsd2021
2021-06-11.key

thm 3 proof.png

0o
0a
<>
98
0lo
<
®
<
K
<
0

® O < daisy-nfs

32 Dropbox (MIT) e

23 Dropbox (Personal)

Vertyrg a concurrent Se system
Wi sequermal prooks

v

tem
Vertyirg a concurrent Shed
With sequeetial proal,

o

DalsyNFS: 3 verted,
concurere, crmysafe fle sysiem

o

B3 papers

dafny-jrnl/group- dafny-jrnl/group- dafny-nfsd-proof- daisy-nfs macOS daisy-nfsd/ daisy/ucsd2021
E3 Notability meeting.key meeting.pdf timing.numbers demo.mov 0sdi2022.scap 2021-06-11.key
B3 gojournal —

Sifeese T h

B5 daisy-nfs ~EEEE |
&} tehajed v/ v, & (v v

daisy/ucsd2021 demo-dafny-nfsd demo-dafny- demo-dafny- demo.mov logo

practice.key 2021-10-14.mov nfsd-small.mov nfsd.mov
< iCloud Drive
h ==

(= Desktop

(Y Documents

v

" @

—0

> @

Overall Theorem thesis-defense thesis- Thm 3 thm 3 proof.png
system.pdf statements.pdf defense.scap diagram.pdf
BOOTCAMP
h
& borel | _

thm1-
statement.png

thm2-
statement.png

thm3-
statement.png

timeline.md

verification-demo

O/ 23 c4 obe ..

0O
Favorites

33 Dropbox (MIT)
33 Dropbox (Personal)
B3 papers

E3 Notability

5 gojournal

B3 daisy-nfs

{a} tchajed

iCloud

< iCloud Drive
(= Desktop

(Y Documents

< daisy-nfs

Verfiyrg a concurrent Se system
Wi sequermal prooks

v

dafny-jrnl/group-

meeting.key

DaslsyNsS: 3 verfed,
wrrere, crmvasfe fe

©

daisy/ucsd2021
practice.key

o

dafny-jrnl/group-
meeting.pdf

demo-dafny-nfsd
2021-10-14.mov

PDF O

oo
0o

p—

dafny-nfsd-proof-
timing.numbers

)

<

demo-dafny-
nfsd-small.mov

prm——

o

<>

daisy-nfs macOS
demo.mov

demo-dafny-
nfsd.mov

daisy-nfsd/
0sdi2022.scap

N

v/

demo.mov

PDF Q

daisy/ucsd2021
2021-06-11.key

Overall Theorem thesis-defense thesis- Thm 3 thm 3 proof.png
Locations system.pdf statements.pdf defense.scap diagram.pdf
BOOTCAMP

e ’ ‘

& borel a Hee | e
@ brouwer A Q O Q M2 O — MQ

thm1- thm2- thm3- timeline.md verification-demo
Tags statement.png statement.png statement.png

c4 oe ..

oo @ [:j —) 4 Years Months Days All Photos G O O Q searct

Photos
Library

) Memories
® O ® People

Y. Places

Favorites) Favorites

23 Dropbox (MIT) @ Recents

3 Imports
33 Dropbox (Person
[ij Recently Deleted

E papers Albums
E3 Notability > L] Media Types
v &-] Shared Albums

B gojournal 22 Activity
B5 daisy-nfs - [l ramiy

& Padma2021

tchajed

m j ®.8 Corona Ji
iCloud a Newsletter
ICiou

India 2019-2020
> iCloud Drive v (= My Albums
(=] Desktop G LA 2021

. Logos
(Y Documents -

Older Dropbox...
o B sait Lake City hi..
ocations

Harrison
[\
BOOTCAMP #2 |ndia 2019-2020
£ borel & Panda

T
<0 brouwer A I & IF
thm1- thm2- thm3- timeline.md verification-demo

Taqgs statement.png statement.png statement.png

O/ 23 c4 obe ..

[NON) [:l = —) Years Months Days All Photos @ h ‘ Q searc

Photos
Library

Showing: All Items v

) Memories
® O @ People

J, Places

Favorites) Favorites

33 Dropbox (MIT) @ Recents

3 Imports 5
33 Dropbox (Person !
[ij Recently Deleted i
f
E papers Albums §
5 Notability > [] Media Types !
v &-] Shared Albums
5 gojournal

22 Activity

B5 daisy-nfs | i ramiy
& Padma2021

{a} tchajed _
Corona Ji
) a Newsletter
iCloud :
India 2018-2020
> iCloud Drive v (= My Albums
(=] Desktop G LA 2021
- Logos
(Y Documents -
Older Dropbox...
_ B sait Lake City hi..
Locations
E Harrison
[\
BOOTCAMP #2 |ndia 2019-2020
& borel & Panda
<0 brouwer A
thm1- thm2- thm3- timeline.md verification-demo
Taqgs statement.png statement.png statement.png

O7 23 c4 obe ..

Important that the file system be correct

Responsible for storing all persistent data
Nearly all applications rely on it

Bugs can cause permanent data loss

File systems are just programs and
therefore they have bugs

File systems struggle with
crash safety + concurrency + high performance

File systems struggle with
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

File systems struggle with
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

concurrency comes from devices, simultaneous user
requests

File systems struggle with
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

concurrency comes from devices, simultaneous user
requests

high performance makes both of these hard

DaisyNFS is a new, verified file system

> : DaisyNFS code

DaisyNFS is a new, verified file system

= \, DaisyNFS code proof

lcompile

v

proofs are machine-checked

DaisyNFS is a new, verified file system

= : DaisyNFS code proof
lcompile lcompile
daisy-nfsd server v

proofs are machine-checked

DaisyNFS is a new, verified file system

DaisyNFS code proof
applications lcompile lcompile
V
daisy-nfsd server v
\ / implements the proofs are machine-checked
Linux client standard NFS protocol

DaisyNFS is a real file system

O @® 13
@hamilton ~
16:31 > |

demo:1:fish - "fish [home/tchajed"

drwxr-xr-x -

8 Jun 12:44 /mnt/nfs

DaisyNFS is a real file system

O @® 13
@hamilton ~
16:31 > |

demo:1:fish - "fish [home/tchajed"

drwxr-xr-x -

8 Jun 12:44 /mnt/nfs

Approach: formal verification

Give mathematical proof that code does what it's
supposed to

Formalize desired behavior as a specification

Approach: formal verification

Verification (Coq)

Implementation (Go)

Approach: formal verification

Implementation (Go) Verification (Coq)

translate

Approach: formal verification

Implementation (Go) Verification (Coq)

translate

. code_model.v : Spec.v

Approach: formal verification

Implementation (Go) Verification (Coq)

translate

Approach: formal verification

Implementation (Go) Verification (Coq)

translate

proof.v

l dele proofs are checked
by a proof assistant
v

Approach: formal verification

Implementation (Go) Verification (Coq)

translate

code_model.v spec.v
go build e proof.v
deploy & l Sele proofs are checked

by a proof assistant

run
v

Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

translate

. code_model.v spec.v
|go build 9 proof.v
deploy & l 06
run 5
4

10

Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

specification for

crashes?

translate

. code_model.v
N\ "4
go build 9 proof.v
deploy & l oG
run 5
v

10

Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

specification for
crashes?

translate

go build

deploy & reason about concurrency
run and crashes?

10

Verification of storage systems is challenging

Verification (Coq)

specification for
crashes?

reason about
code?

code.go

reason about concurrency
and crashes?

10

Veritying a file system is a daunting task

Still need to reason about crash safety + concurrency for
a high performance implementation

DaisyNFS organizes the system and proof to make this
manageable

11

DaisyNFS architecture

“&\ DaisyNFS

12

DaisyNFS architecture

;\.e DaisyNFS verified file
I\ system

12

DaisyNFS architecture

‘ | y .
:\.f DaisyNFS verified file
" system

Dafny
compiler

(GO output

verified transaction
f\ GoTxn system

daisy-nfsd :

12

DaisyNFS architecture

),0‘\\ DaisyNFS

Dafny
compiler

5 Proof of GoTxn
GO output g
Goose

N

daisy-nfsd

Cog

12

DaisyNFS architecture

Qe
,'.\\\ DaisyNFS

Dafny
compiler

tool for reasoning
about Go code Proof of GoTxn
(O output E
Goose
daisy-nfsd § =
f 5 Perennial framework for proofs about
D y CraSh Safety and Concurrency

N

CoqQ

13

DaisyNFS architecture

Me
7,0‘\(DaisyNFS

Dafny
compiler

DaisyNFS architecture

:'.‘\\ DaisyNFS > > Proof of DaisyNFS

Dafny
compiler

Proof of GoTxn
Go output ||nk|ng
theorem
Goose
daisy-nfsd PrOOf of
; Perennial . dalsy-nfsd

°
Cog 5

14

Contributions

Perennial + Goose: foundations for veritying storage
systems written in Go

GoTxn: handles crash safety and concurrency to enable
seguential reasoning

DaisyNFS: a verified concurrent, crash-safe file system

15

What did we prove?

:‘.’(DaisyNFS

7N

Read, Write
(of 4KB blocks)

—

16

What did we prove?

GETATTR, SETATTR
NFS CREATE, READ, WRITE, REMOVE
MKDIR, LOOKUP, READDIR, RENAME

& DaisyNFs

™

Read, Write
(of 4KB blocks)

—

16

What did we prove?

GETATTR, SETATTR
NFS CREATE, READ, WRITE, REMOVE
MKDIR, LOOKUP, READDIR, RENAME

Theorem: Every NFS operation appears
to execute atomically and correctly,
despite crashes and concurrency.

Read, Write
(of 4KB blocks)

—

16

Design and implementation of DaisyNFS

Verifying a high-performance transaction system

Evaluating DaisyNFS

17

DaisyNFS accesses the disk through a
transaction system

;‘,o"c DaisyNFS

- Read, Write

(of 4KB blocks)

disk

18

DaisyNFS accesses the disk through a
transaction system

tx := Begin() . o
v := tx.Read(3) Each operation runs within a

tx.Write(7, v) transaction
. tx.Comm1it()

Read, Write

(of 4KB blocks)

disk

18

DaisyNFS accesses the disk through a
transaction system

disk

Read, Write
(of 4KB blocks)

tx := Begin()
v := tx.Read(3)
tx.Write(7, v)

. tx.Commit()

func Begin() *Txn

func (tx *Txn) Read(..)

Tt func (tx *Txn) Write(..)

func (tx *Txn) Commit()

Each operation runs within a
transaction

Code between Begin() and
Commit () is atomic both on crash
and to other threads

18

Transactions isolate difficult reasoning and leave
simpler sequential reasoning

tx := Begin() , , . :
v := tx.Read(3) Operations are atomic — without worrying about crash

tx.Write(7, v) safety or concurrency
tx.Commit()

Fine-grained concurrency and crashes mean things
GoTxn
are hard

19

Crash atomicity is a key correctness challenge in
file systems

start: goal:

a a

20

Crash atomicity is a key correctness challenge in
file systems

start: / \ goal:

a a

20

Crash atomicity is a key correctness challenge in
file systems

start: /

a

20

Crash atomicity is a key correctness challenge in
file systems

start: /

= o
L]

20

Common approach is to use journaling

One solution: journaling is a way to write multiple values
atomically

Simplifies crash atomicity but journaling is subtle to use
correctly

21

Journal gathers up writes and issues them at
once

op := Begin()

op.Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

Vv := op.Read(3)
op.Write(/, v)
op.Write(8, v)
op.Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()
Vv := op.Read(3)
op.Write(/, v)

op.Write(8, v)*\\\\\\\\\
op.Commit() both writes go to disk together on Commit ()

22

Journal gathers up writes and issues them at
once

op := Begin()
Vv := op.Read(3)
op.Write(/, v)
op.Write(8, v)

op.Commit() both writes go to disk together on Commit ()

22

Journal gathers up writes and issues them at
once

’

op.Write(8;Vv)
op.Commit() both writes go to disk together on Commit ()

op := Begin() code needs to guarantee other
v := op.Read(3 threads don't touch 3, 7, 8
op .Writ6(7 M

22

Journal gathers up writes and issues them at
once

op := Begin() code needs ,to guarantee other

v := op.Read(3) threads don't touch 3, 7, 8

op.Write(/, v)

op.Write(8, v)

op.Commit() both writes go to disk together on Commit ()

22

Potential bug even with journaling

A
X

-l

23

Potential bug even with journaling

deleting file x:

A
X
free(a)
- I

op := Begin()

time

op.Commit()

23

Potential bug even with journaling

deleting file x: appending to y:

op := Begin()

op := Begin()
free(a)

time

alloc() - a
op.Commit()

op.Commit()

23

Potential bug even with journaling

deleting file x: appending to y:

op := Begin()

op := Begin()
free(a)

time

alloc() - a

op.Commit()
o crash

23

Potential bug even with journaling

deleting file x: appending to y:

N
X

Q op := Begin() \
g free(a) alloc() - a
- I
op.Commit ()
- crash — both x and y contain block a

A
Y

op := Begin()

®

23

Designed a file system around transactions

~_
J

SUZ DaisyNFs

func

func

T func

func

Begin() *Txn

(tx *Txn) Read(..)
(tx *Txn) Write(..)

(tx *Txn) Commit()

Unlike journaling, provides strong
atomicity guarantee

24

Designed a file system around transactions

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)
. tx.Commit()

func Begin() *Txn

... func (tx *Txn) Read(..)
. func (tx *Txn) Write(..)

func (tx *Txn) Commit()

Design that fits all file-system code

INto transactions

Unlike journaling, provides strong
atomicity guarantee

24

Transactions are so sequential that we verify
them without a concurrency framework

_ verified using Dafny

Ne .
S DaisyNFs

25

Transactions are so sequential that we verify
them without a concurrency framework

_ verified using Dafny

W/ . existing, widely-used verification system

Ne o,
,’0‘\\ DaisyNFS

"""""" verified using Perennial

our own custom infrastructure

25

Transactions are so sequential that we verify
them without a concurrency framework

_ verified using Dafny

;\.l(DaisyNFS existing, widely-used verification system
TN 2% as much proof as code

"""""" verified using Perennial

our own custom infrastructure
20x as much proof as code

25

Sequential reasoning helps because each
operation needs to do a lot

internal view

user'’s view

20

Sequential reasoning helps because each
operation needs to do a lot

f's inode

internal view

user'’s view

Sequential reasoning helps because each
operation needs to do a lot

f'sinode ¢

internal view

user'’s view

Sequential reasoning helps because each
operation needs to do a lot

f's inode

data /
indirect block
internal view

user'’s view

Sequential reasoning helps because each
operation needs to do a lot

f's inode

data

/‘“/

indirect block

allocator l]

I data blocks

internal view

user'’s view

20

Sequential reasoning helps because each
operation needs to do a lot

f's inode

allocator l]

I data blocks

user appends
“d” to the file

internal view

user'’s view

27

Sequential reasoning helps because each
operation needs to do a lot

f's inode

allocator l]

I data blocks

user appends
“d” to the file

internal view

user'’s view

27

Sequential reasoning helps because each
operation needs to do a lot

f'sinode ¢ ¢ ¢ allocator l]:l]l data blocks

Pt

allocate for indirect block
and direct block

internal view

user'’s view

user appends
“d” to the file

Careful specification of the transaction system
enables this division of proof

code

tx := Begin() o , ,] :
v := tx.Read(3) Intuitively, think of this block of code as being atomic
tx.Write(7, v)

tx.Commit ()

283

Careful specification of the transaction system
enables this division of proof

code

tx := Begin() o , ,] :
v := tx.Read(3) Intuitively, think of this block of code as being atomic
tx.Write(7, v)

tx.Commit ()

spec

atomically { o
v — Read(3); Specification formalizes this by relating code programs to

Write(7, v); simpler spec programs
}

283

Design and implementation of DaisyNFS

Verifying a high-performance transaction system

—valuating DaisyNFS

:‘&” DaisyNFS

NN

8
LL
Z
=>
2
©
O

30

Recall: RENAME needs to update two things
atomically

?
——_—
a a

31

Write-ahead logging is the core atomicity
primitive

\og mstall

fixed-size log data

32

l multiwrite

iNn-memory buffer
log

fixed-size log

install

/™
|

data

33

Writes, logging, and installation are all
concurrent

l multiwrite

in-memory buffer
log

install

/™
|]

fixed-size log data

33

Logging happens lock-free in the background

;diskEnd

lll

for 1 disk log
}

34

Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N - mermory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)

L.memLock.Unlock()

34

Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N I B n-memory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)
L.memLock.Unlock()
circ.Append(diskEnd, newBufs) append newBufs to log

34

Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N I B n-memory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)
L.memLock.Unlock()
circ.Append(diskEnd, newBufs) append newBufs to log

l.memLock.Lock()
diskEnd += len(newBufs)
l.memLock.Unlock()

record that this batch is durable

34

Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N I B n-memory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)
L.memLock.Unlock()
circ.Append(diskEnd, newBufs) append newBufs to log

l.memLock.Lock()
diskEnd += len(newBufs)
l.memLock.Unlock()

record that this batch is durable

// walt for a bit

34

Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 D S IS in-memory bufer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs) append newBufs to log
1.memLock.Lock() after this operation, diskEnd
diskEnd += len(newBufs) doesn't reflect what is durable

l.memLock.Unlock()

// walt for a bit

34

Proof uses general concurrency techniques to
reason about lock-free region

ldiskEnd

in-memory buffer

disk log

35

Proof uses general concurrency techniques to
reason about lock-free region

ldiskEnd

in-memory buffer

disk log

logger knows exactly

diskEnd+2 writes are durable

35

Proof uses general concurrency techniques to
reason about lock-free region

other threads know at least

diskEnd writes are durable

ldiskEnd

in-memory buffer

disk log

logger knows exactly

diskEnd+2 writes are durable

35

Many other challenges in GoTxn proof

What's the specification for each internal layer?

Invariants for lock-free installation, concurrency within a
block, two-phase locking

360

Design and implementation of

Verifying a high-performance transaction system

Evaluating DaisyNFS

DalsyN

-5

37

Most of the proof is for GoTxn

Proof of GoTxn

model of code

Perennial

338

Most of the proof is for GoTxn

Proof of GoTxn 35,000 lines

model of code

Perennial

338

Most of the proof is for GoTxn

\

: /) ,
3,200 lines 7,0\\’: DaisyNFS <

Proof of GoTxn 35,000 lines

model of code

Perennial

338

Limitations

39

Limitations

[imit performance

Only synchronous Commit

Must use transactions from Dafny

39

Limitations

[imit performance

imits to proof

___1
||

1

Only synchronous Commit
Must use transactions from Dafny
Could still have deadlock

Linking theorem proven on paper

39

Proof assumptions

We assume that:
Goose accurately models Go
Disk has atomic 4KB reads and writes

NFS specification is written correctly

40

Evaluate performance using an NFS client

mount hostname:/ /mnt

syscalls NES :""""""'""""""'E
: : > :
- Linux NFS client < 5 NFS server :

41

Compare against Linux NFS

mount hostname:/ /mnt

syscalls NES
. . >
- Linux NFS client <

e DalIsyNFS

VS

Linux NFS server

—
4—

local ext4

*using data=journal

42

Performance evaluation setup

Hardware: i3.metal instance
36 cores at 2.3GHz, NVMe SSD

Benchmarks:
e smallfile;: metadata heavy
o |argefile: lots of data
* app:git clone + make

43

Relative throughput

Linux NFS I DaisyNFS

—h

0.8

0.6

0.4

0.2

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

44

DaisyNFS gets comparable performance even
with a single client

Linux NFS I DaisyNFS

Relative throughput
© o ©
B~ o oo -l

O
N

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

44

7000 -

5600 -

4200 -

files/s

2800 -

1400 -

number of clients

Run smallfile with many clients on an NVMe SSD

45

DaisyNFS can take advantage of multiple clients

/7000 -
DaisyNFS
5600 -

4200 -

files/s

2800 -

1400 -

4 38 12 16 20 24 28 32 36

number of clients

Run smallfile with many clients on an NVMe SSD

45

Concurrency in the transaction system matters

files/s

7000 -

DaisyNFS

5600 -

4200 -

2800 -

1400 -

number of clients

Seq. GoTxn is DaisyNFS but with locks
around tricky concurrent parts of WAL

46

Related work

47

Related work

crash safety and concurrency:

crash safety:
-SCQ, Ygedrasil, VeriBetrkS

concurrency:

Concurrent GC, CertiIKOS, AtomF

-lashix concurrent file system, ShardStore

48

Other related work

Goose: VST and CH20 for reasoning about C

Perennial: builds on top of Iris

GoTxn: verified transaction algorithms but not systems

DaisyNFS: builds upon DFSCQ and Yggdrasil

49

Each system is general-purpose

Perennial and Goose can be applied to other storage
systems, languages, and hardware

GoTxn can be used to build other storage systems, in
Dafny or Perennial

50

Summary

New foundations (Perennial and Goose) make verification of
concurrent storage systems possible

GoTxn isolates the difficult reasoning so proofs on top use
seguential reasoning

Verified DaisyNFS, a concurrent, crash-safe file system with
performance comparable to Linux

51

Acknowledgments

Frans Kaashoek

Nickolai Zeldovich

Joe Tassarottl

53

54

‘d PDOS

Neha, Austin, Srivatsa,

ulian,

Jelle, Haogang, Shoumi

-rank, Amy, Malte, Joe,

Jon

K, Cody,
David,

Atalay, Anish, Derek, Jonathan,

Akshay, Lily, Josh, Inho,

Zain,

Ariel, Kevin, Alex, Upamanyu,

Ralf, Yun-Sheng

55

Mentees

‘d PDOS

Daniel Ziegler
Alex Konradi
Lef lonnadis
Sydney Gibson
Sharon Lin

56

MIT PL

Sara Achour, Clément Pit-Claudel, Ben Sherman,
Sam Gruetter, Thomas Bourgeat, and many others

57

CSC board games

especially Leilani, Nathan, Max, Jon, and Ajay

53

CSC board games

especially Leilani, Nathan, Max, Jon, and Ajay

53

MIT

EECS

COMMUNICATION LAB
mitcommlab.mit.edu/eecs/

59

250 Elm

[

im
il

AARLEL!

.

—
&

",
&

MM

7

60

Many others

o1

