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Important that the file system be correct

Responsible for storing all persistent data
Nearly all applications rely on it

Bugs can cause permanent data loss



File systems are just programs and
therefore they have bugs



File systems struggle with
crash safety + concurrency + high performance
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File systems struggle with
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

concurrency comes from devices, simultaneous user
requests

high performance makes both of these hard



DaisyNFS is a new, verified file system

> : DaisyNFS code
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DaisyNFS is a new, verified file system

DaisyNFS code proof
applications lcompile lcompile
V
daisy-nfsd server v
\ / implements the proofs are machine-checked
Linux client standard NFS protocol



DaisyNFS is a real file system
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DaisyNFS is a real file system

O @® 13
@hamilton ~
16:31 > |

demo:1:fish - "fish [home/tchajed"

drwxr-xr-x -

8 Jun 12:44 /mnt/nfs




Approach: formal verification

Give mathematical proof that code does what it's
supposed to

Formalize desired behavior as a specification
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Approach: formal verification

Implementation (Go) Verification (Coq)

translate

code_model.v spec.v
go build e proof.v
deploy & l Sele proofs are checked

by a proof assistant

run
v



Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

translate

. code_model.v spec.v
|go build 9 proof.v
deploy & l 06
run 5
4

10



Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

specification for

crashes?

translate

. code_model.v
N\ "4
go build 9 proof.v
deploy & l oG
run 5
v

10



Verification of storage systems is challenging

Implementation (Go) Verification (Coq)

specification for
crashes?

translate

go build

deploy & reason about concurrency
run and crashes?

10



Verification of storage systems is challenging

Verification (Coq)

specification for
crashes?

reason about
code?

code.go

reason about concurrency
and crashes?

10



Veritying a file system is a daunting task

Still need to reason about crash safety + concurrency for
a high performance implementation

DaisyNFS organizes the system and proof to make this
manageable

11



DaisyNFS architecture

“&\ DaisyNFS

12



DaisyNFS architecture

;\.e DaisyNFS verified file
I\ system
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DaisyNFS architecture

‘ | y .
:\.f DaisyNFS verified file
" system

Dafny
compiler

(GO output

verified transaction
f\ GoTxn system

daisy-nfsd :
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DaisyNFS architecture

),0‘\\ DaisyNFS

Dafny
compiler

5 Proof of GoTxn
GO output g
Goose

N

daisy-nfsd

Cog
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DaisyNFS architecture

Qe
,'.\\\ DaisyNFS

Dafny
compiler

tool for reasoning
about Go code Proof of GoTxn
(O output E
Goose
daisy-nfsd § =
f 5 Perennial framework for proofs about
D y CraSh Safety and Concurrency

N

CoqQ
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DaisyNFS architecture

Me
7,0‘\( DaisyNFS

Dafny
compiler




DaisyNFS architecture

:'.‘\\ DaisyNFS > > Proof of DaisyNFS

Dafny
compiler

Proof of GoTxn
Go output ||nk|ng
theorem
Goose
daisy-nfsd PrOOf of
; Perennial . dalsy-nfsd

°
Cog 5
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Contributions

Perennial + Goose: foundations for veritying storage
systems written in Go

GoTxn: handles crash safety and concurrency to enable
seguential reasoning

DaisyNFS: a verified concurrent, crash-safe file system

15



What did we prove?

:‘.’( DaisyNFS

7N

Read, Write
(of 4KB blocks)

—
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What did we prove?

GETATTR, SETATTR
NFS CREATE, READ, WRITE, REMOVE
MKDIR, LOOKUP, READDIR, RENAME

Theorem: Every NFS operation appears
to execute atomically and correctly,
despite crashes and concurrency.

Read, Write
(of 4KB blocks)

—

16



Design and implementation of DaisyNFS

Verifying a high-performance transaction system

Evaluating DaisyNFS

17



DaisyNFS accesses the disk through a
transaction system

;‘,o"c DaisyNFS

- Read, Write

(of 4KB blocks)

disk

18



DaisyNFS accesses the disk through a
transaction system

tx := Begin() . o
v := tx.Read(3) Each operation runs within a

tx.Write(7, v) transaction
. tx.Comm1it()

Read, Write

(of 4KB blocks)

disk

18



DaisyNFS accesses the disk through a
transaction system

disk

Read, Write
(of 4KB blocks)

tx := Begin()
v := tx.Read(3)
tx.Write(7, v)

. tx.Commit()

func Begin() *Txn

func (tx *Txn) Read(..)

Tt func (tx *Txn) Write(..)

func (tx *Txn) Commit()

Each operation runs within a
transaction

Code between Begin() and
Commit () is atomic both on crash
and to other threads

18



Transactions isolate difficult reasoning and leave
simpler sequential reasoning

tx := Begin() , , . :
v := tx.Read(3) Operations are atomic — without worrying about crash

tx.Write(7, v) safety or concurrency
tx.Commit()

Fine-grained concurrency and crashes mean things
GoTxn
are hard

19



Crash atomicity is a key correctness challenge in
file systems

start: goal:

a a

20



Crash atomicity is a key correctness challenge in
file systems

start: / \ goal:

a a

20



Crash atomicity is a key correctness challenge in
file systems

start: /

a

20



Crash atomicity is a key correctness challenge in
file systems

start: /

= o
L]
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Common approach is to use journaling

One solution: journaling is a way to write multiple values
atomically

Simplifies crash atomicity but journaling is subtle to use
correctly

21



Journal gathers up writes and issues them at
once

op := Begin()

op.Commit()
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Journal gathers up writes and issues them at
once

op := Begin()
Vv := op.Read(3)
op.Write(/, v)

op.Write(8, v)*\\\\\\\\\
op.Commit() both writes go to disk together on Commit ()

22



Journal gathers up writes and issues them at
once

op := Begin()
Vv := op.Read(3)
op.Write(/, v)
op.Write(8, v)

op.Commit() both writes go to disk together on Commit ()

22



Journal gathers up writes and issues them at
once

’

op.Write(8;Vv)
op.Commit() both writes go to disk together on Commit ()

op := Begin() code needs to guarantee other
v := op.Read(3 threads don't touch 3, 7, 8
op .Writ6(7 M

22



Journal gathers up writes and issues them at
once

op := Begin() code needs ,to guarantee other

v := op.Read(3) threads don't touch 3, 7, 8

op.Write(/, v)

op.Write(8, v)

op.Commit() both writes go to disk together on Commit ()

22



Potential bug even with journaling

A
X

-l

23



Potential bug even with journaling

deleting file x:

A
X
free(a)
- I

op := Begin()

time

op.Commit()
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Potential bug even with journaling

deleting file x: appending to y:

op := Begin()

op := Begin()
free(a)

time

alloc() - a
op.Commit()

op.Commit()
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Potential bug even with journaling

deleting file x: appending to y:

op := Begin()

op := Begin()
free(a)

time

alloc() - a

op.Commit()
o crash

23



Potential bug even with journaling

deleting file x: appending to y:

N
X

Q op := Begin() \
g free(a) alloc() - a
- I
op.Commit ()
- crash — both x and y contain block a

A
Y

op := Begin()

®

23



Designed a file system around transactions

~_
J

SUZ DaisyNFs

func

func

T func

func

Begin() *Txn

(tx *Txn) Read(..)
(tx *Txn) Write(..)

(tx *Txn) Commit()

Unlike journaling, provides strong
atomicity guarantee

24



Designed a file system around transactions

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)
. tx.Commit()

func Begin() *Txn

... func (tx *Txn) Read(..)
. func (tx *Txn) Write(..)

func (tx *Txn) Commit()

Design that fits all file-system code

INto transactions

Unlike journaling, provides strong
atomicity guarantee

24



Transactions are so sequential that we verify
them without a concurrency framework

_ verified using Dafny

Ne .
S DaisyNFs

25



Transactions are so sequential that we verify
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_ verified using Dafny

W/ . existing, widely-used verification system

Ne o,
,’0‘\\ DaisyNFS

"""""" verified using Perennial

our own custom infrastructure
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Transactions are so sequential that we verify
them without a concurrency framework

_ verified using Dafny

;\.l( DaisyNFS existing, widely-used verification system
TN 2% as much proof as code

"""""" verified using Perennial

our own custom infrastructure
20x as much proof as code

25



Sequential reasoning helps because each
operation needs to do a lot

internal view

user'’s view

20
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Sequential reasoning helps because each
operation needs to do a lot

f's inode

data

/‘“/

indirect block

allocator l]

I data blocks

internal view

user'’s view
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Sequential reasoning helps because each
operation needs to do a lot

f's inode

allocator l]

I data blocks

user appends
“d” to the file

internal view

user'’s view
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f's inode

allocator l]

I data blocks

user appends
“d” to the file

internal view

user'’s view
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Sequential reasoning helps because each
operation needs to do a lot

f'sinode ¢ ¢ ¢ allocator l]:l]l data blocks

Pt

allocate for indirect block
and direct block

internal view

user'’s view

user appends
“d” to the file




Careful specification of the transaction system
enables this division of proof

code

tx := Begin() o , , ] :
v := tx.Read(3) Intuitively, think of this block of code as being atomic
tx.Write(7, v)

tx.Commit ()

283



Careful specification of the transaction system
enables this division of proof

code

tx := Begin() o , , ] :
v := tx.Read(3) Intuitively, think of this block of code as being atomic
tx.Write(7, v)

tx.Commit ()

spec

atomically { o . . . .
v — Read(3); Specification formalizes this by relating code programs to

Write(7, v); simpler spec programs
}

283



Design and implementation of DaisyNFS

Verifying a high-performance transaction system

—valuating DaisyNFS
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Recall: RENAME needs to update two things
atomically

?
——_—
a a

31



Write-ahead logging is the core atomicity
primitive

\og mstall

fixed-size log data

32



l multiwrite

iNn-memory buffer
log

fixed-size log

install

/™
|

data

33



Writes, logging, and installation are all
concurrent

l multiwrite

in-memory buffer
log

install

/™
| ]

fixed-size log data

33



Logging happens lock-free in the background

;diskEnd

lllllllllllllllllllllllllllllllllllllllllllllllllll

for 1 disk log
}
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Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N - mermory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)

L.memLock.Unlock()
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$diskEnd
var diskEnd uint64 N I B n-memory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)
L.memLock.Unlock()
circ.Append(diskEnd, newBufs) append newBufs to log

l.memLock.Lock()
diskEnd += len(newBufs)
l.memLock.Unlock()

record that this batch is durable
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Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 N I B n-memory buffer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)
L.memLock.Unlock()
circ.Append(diskEnd, newBufs) append newBufs to log

l.memLock.Lock()
diskEnd += len(newBufs)
l.memLock.Unlock()

record that this batch is durable

// walt for a bit

34



Logging happens lock-free in the background

$diskEnd
var diskEnd uint64 D S IS in-memory bufer
for { disk log
L.memLock.Lock()
newBufs := l.memLog.takeFrom(diskEnd) grab newBufs (orange writes to be written)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs) append newBufs to log
1.memLock.Lock() after this operation, diskEnd
diskEnd += len(newBufs) doesn't reflect what is durable

l.memLock.Unlock()

// walt for a bit

34



Proof uses general concurrency techniques to
reason about lock-free region

ldiskEnd

in-memory buffer

disk log
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Proof uses general concurrency techniques to
reason about lock-free region

ldiskEnd

in-memory buffer

disk log

logger knows exactly

diskEnd+2 writes are durable
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Proof uses general concurrency techniques to
reason about lock-free region

other threads know at least

diskEnd writes are durable

ldiskEnd

in-memory buffer

disk log

logger knows exactly

diskEnd+2 writes are durable

35



Many other challenges in GoTxn proof

What's the specification for each internal layer?

Invariants for lock-free installation, concurrency within a
block, two-phase locking

360



Design and implementation of

Verifying a high-performance transaction system

Evaluating DaisyNFS

DalsyN

-5

37



Most of the proof is for GoTxn

Proof of GoTxn

model of code

Perennial
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Most of the proof is for GoTxn

\

: /) ,
3,200 lines 7,0\\’: DaisyNFS <

Proof of GoTxn 35,000 lines

model of code

Perennial

338



Limitations
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Limitations

[imit performance

Only synchronous Commit

Must use transactions from Dafny
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Limitations

[imit performance

imits to proof

___1
||

1

Only synchronous Commit
Must use transactions from Dafny
Could still have deadlock

Linking theorem proven on paper

39



Proof assumptions

We assume that:
Goose accurately models Go
Disk has atomic 4KB reads and writes

NFS specification is written correctly

40



Evaluate performance using an NFS client

mount hostname:/ /mnt

syscalls NES :""""""'""""""'E
: : > :
- Linux NFS client < 5 NFS server :

41



Compare against Linux NFS

mount hostname:/ /mnt

syscalls NES
. . >
- Linux NFS client <

e DalIsyNFS

VS

Linux NFS server

—
4—

local ext4

*using data=journal

42



Performance evaluation setup

Hardware: i3.metal instance
36 cores at 2.3GHz, NVMe SSD

Benchmarks:
e smallfile;: metadata heavy
o |argefile: lots of data
* app:git clone + make

43



Relative throughput

Linux NFS I DaisyNFS

—h

0.8

0.6

0.4

0.2

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

44



DaisyNFS gets comparable performance even
with a single client

Linux NFS I DaisyNFS

Relative throughput
© o ©
B~ o oo -l

O
N

smallfile largefile app

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

44



7000 -

5600 -

4200 -

files/s

2800 -

1400 -

number of clients

Run smallfile with many clients on an NVMe SSD
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DaisyNFS can take advantage of multiple clients

/7000 -
DaisyNFS
5600 -

4200 -

files/s

2800 -

1400 -

4 38 12 16 20 24 28 32 36

number of clients

Run smallfile with many clients on an NVMe SSD

45



Concurrency in the transaction system matters

files/s

7000 -

DaisyNFS

5600 -

4200 -

2800 -

1400 -

number of clients

Seq. GoTxn is DaisyNFS but with locks
around tricky concurrent parts of WAL

46



Related work
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Related work

crash safety and concurrency:

crash safety:
-SCQ, Ygedrasil, VeriBetrkS

concurrency:

Concurrent GC, CertiIKOS, AtomF

-lashix concurrent file system, ShardStore

48



Other related work

Goose: VST and CH20 for reasoning about C

Perennial: builds on top of Iris

GoTxn: verified transaction algorithms but not systems

DaisyNFS: builds upon DFSCQ and Yggdrasil

49



Each system is general-purpose

Perennial and Goose can be applied to other storage
systems, languages, and hardware

GoTxn can be used to build other storage systems, in
Dafny or Perennial

50



Summary

New foundations (Perennial and Goose) make verification of
concurrent storage systems possible

GoTxn isolates the difficult reasoning so proofs on top use
seguential reasoning

Verified DaisyNFS, a concurrent, crash-safe file system with
performance comparable to Linux

51
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