
Verifying a concurrent, crash-safe file
system with sequential reasoning

Tej Chajed 
PhD defense

October 21st, 2021

2

2

07 23 c4 6e …

2

07 23 c4 6e …

file system

2

07 23 c4 6e …

file system

2

07 23 c4 6e …

file system

3

Important that the file system be correct

Responsible for storing all persistent data

Nearly all applications rely on it

Bugs can cause permanent data loss

4

File systems are just programs and 
therefore they have bugs

5

File systems struggle with 
crash safety + concurrency + high performance

5

File systems struggle with 
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

5

File systems struggle with 
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

concurrency comes from devices, simultaneous user
requests

5

File systems struggle with 
crash safety + concurrency + high performance

a crash is any sudden interruption, like a power failure

concurrency comes from devices, simultaneous user
requests

high performance makes both of these hard

6

DaisyNFS is a new, verified file system

 DaisyNFS code

6

DaisyNFS is a new, verified file system

 DaisyNFS code

proofs are machine-checked
✓

compile

proof

6

DaisyNFS is a new, verified file system

 DaisyNFS code

daisy-nfsd server

compile

proofs are machine-checked
✓

compile

proof

6

DaisyNFS is a new, verified file system

 DaisyNFS code

applications

Linux client
implements the

standard NFS protocol

daisy-nfsd server

compile

proofs are machine-checked
✓

compile

proof

7

DaisyNFS is a real file system

7

DaisyNFS is a real file system

8

Approach: formal verification

Give mathematical proof that code does what it’s
supposed to

Formalize desired behavior as a specification

9

Approach: formal verification

code.go

Implementation (Go) Verification (Coq)

9

Approach: formal verification

code.go code_model.v

Implementation (Go) Verification (Coq)

translate
1

9

Approach: formal verification

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

9

Approach: formal verification

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

9

Approach: formal verification

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

proofs are checked
by a proof assistant

✓

Coq

9

Approach: formal verification

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

proofs are checked
by a proof assistant

✓

Coq

go build

deploy & 
run

10

Verification of storage systems is challenging

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

✓

Coq

go build

deploy & 
run

10

Verification of storage systems is challenging

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

✓

Coq

go build

deploy & 
run

specification for
crashes?

10

Verification of storage systems is challenging

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

✓

Coq

go build

deploy & 
run

specification for
crashes?

reason about concurrency
and crashes?

10

Verification of storage systems is challenging

code.go spec.v

2

code_model.v

Implementation (Go) Verification (Coq)

translate
1

proof.v
3

✓

Coq

go build

deploy & 
run

specification for
crashes?

reason about concurrency
and crashes?

reason about
code?

11

Verifying a file system is a daunting task

Still need to reason about crash safety + concurrency for
a high performance implementation

DaisyNFS organizes the system and proof to make this
manageable

12

DaisyNFS architecture

GoTxn

Dafny

 DaisyNFS

12

DaisyNFS architecture

GoTxn

Dafny

 DaisyNFS

verified transaction
system

verified file
system

12

DaisyNFS architecture

GoTxn

Dafny

 DaisyNFS

Go output

daisy-nfsd

Dafny

compiler

verified transaction
system

verified file
system

12

DaisyNFS architecture

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

Dafny

 DaisyNFS

Go output

daisy-nfsd

Dafny

compiler

13

DaisyNFS architecture

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

Go output

daisy-nfsd

Dafny

compiler

Dafny

 DaisyNFS

framework for proofs about
crash safety and concurrency

tool for reasoning
about Go code

14

DaisyNFS architecture

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

Proof of DaisyNFS

Dafny

 DaisyNFS

Go output

daisy-nfsd

Dafny

compiler

14

DaisyNFS architecture

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

Proof of DaisyNFS

Dafny

 DaisyNFS

Go output

daisy-nfsd

Dafny

compiler

linking
theorem

Proof of
daisy-nfsd

15

Contributions

Perennial + Goose: foundations for verifying storage
systems written in Go

GoTxn: handles crash safety and concurrency to enable
sequential reasoning

DaisyNFS: a verified concurrent, crash-safe file system

16

What did we prove?

GoTxn

 DaisyNFS

Read, Write

(of 4KB blocks)disk

16

What did we prove?

GoTxn

 DaisyNFS

Read, Write

(of 4KB blocks)disk

NFS
GETATTR, SETATTR

CREATE, READ, WRITE, REMOVE

MKDIR, LOOKUP, READDIR, RENAME

16

What did we prove?

GoTxn

 DaisyNFS

Read, Write

(of 4KB blocks)disk

Theorem: Every NFS operation appears
to execute atomically and correctly,
despite crashes and concurrency.

NFS
GETATTR, SETATTR

CREATE, READ, WRITE, REMOVE

MKDIR, LOOKUP, READDIR, RENAME

Design and implementation of DaisyNFS

17

Verifying a high-performance transaction system

Evaluating DaisyNFS

18

DaisyNFS accesses the disk through a
transaction system

GoTxn

 DaisyNFS

Read, Write

(of 4KB blocks)disk

18

DaisyNFS accesses the disk through a
transaction system

GoTxn

Each operation runs within a
transaction

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

 DaisyNFS

Read, Write

(of 4KB blocks)disk

18

DaisyNFS accesses the disk through a
transaction system

GoTxn

func Begin() *Txn

func (tx *Txn) Read(…)

func (tx *Txn) Write(…)

func (tx *Txn) Commit()

Each operation runs within a
transaction

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

 DaisyNFS

Code between Begin() and
Commit() is atomic both on crash
and to other threads

Read, Write

(of 4KB blocks)disk

19

Transactions isolate difficult reasoning and leave
simpler sequential reasoning

Operations are atomic — without worrying about crash
safety or concurrency

GoTxn
Fine-grained concurrency and crashes mean things
are hard

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

20

Crash atomicity is a key correctness challenge in
file systems

src dst src dst

goal:start:

20

Crash atomicity is a key correctness challenge in
file systems

src dst src dst

src dst
goal:start:

20

Crash atomicity is a key correctness challenge in
file systems

src dst src dst

src dst
goal:start:

20

Crash atomicity is a key correctness challenge in
file systems

src dst src dst

src dst

src dst

goal:start:

21

Common approach is to use journaling

One solution: journaling is a way to write multiple values
atomically

Simplifies crash atomicity but journaling is subtle to use
correctly

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit() both writes go to disk together on Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit() both writes go to disk together on Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit()

code needs to guarantee other
threads don’t touch 3, 7, 8

both writes go to disk together on Commit()

22

Journal gathers up writes and issues them at
once

op := Begin()

v := op.Read(3)

op.Write(7, v)

op.Write(8, v)

op.Commit()

code needs to guarantee other
threads don’t touch 3, 7, 8

both writes go to disk together on Commit()

23

Potential bug even with journaling

x

a

23

Potential bug even with journaling

op.Commit()

deleting file x:

free(a)

…
op := Begin()

x

atim
e

23

Potential bug even with journaling

op.Commit()

deleting file x:

alloc() → a

op.Commit()
…

op := Begin()
free(a)

…
op := Begin()

appending to y:
x y

atim
e

23

Potential bug even with journaling

op.Commit()

deleting file x:

alloc() → a

op.Commit()
…

op := Begin()
free(a)

…
op := Begin()

appending to y:
x y

crash

atim
e

23

Potential bug even with journaling

op.Commit()

deleting file x:

alloc() → a

op.Commit()
…

op := Begin()
free(a)

…
op := Begin()

appending to y:

both x and y contain block a

x y

crash

atim
e

24

Designed a file system around transactions

GoTxn

func Begin() *Txn

func (tx *Txn) Read(…)

func (tx *Txn) Write(…)

func (tx *Txn) Commit()

 DaisyNFS

Unlike journaling, provides strong
atomicity guarantee

24

Designed a file system around transactions

GoTxn

func Begin() *Txn

func (tx *Txn) Read(…)

func (tx *Txn) Write(…)

func (tx *Txn) Commit()

Design that fits all file-system code
into transactions

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

 DaisyNFS

Unlike journaling, provides strong
atomicity guarantee

25

Transactions are so sequential that we verify
them without a concurrency framework

verified using Dafny

verified using PerennialGoTxn

 DaisyNFS

25

Transactions are so sequential that we verify
them without a concurrency framework

verified using Dafny

verified using Perennial

existing, widely-used verification system

our own custom infrastructure

GoTxn

 DaisyNFS

25

Transactions are so sequential that we verify
them without a concurrency framework

verified using Dafny

verified using Perennial

existing, widely-used verification system
2⨉ as much proof as code

our own custom infrastructure
20⨉ as much proof as code

GoTxn

 DaisyNFS

26

Sequential reasoning helps because each
operation needs to do a lot

f abc

internal view

user’s view

26

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

f abc

internal view

user’s view

26

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

data

f abc

internal view

user’s view

26

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

b cindirect block

data

f abc

internal view

user’s view

26

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

allocator

b cindirect block

data

…

f abc

internal view

user’s view

data blocks …

27

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

allocator

b c

…

f abcd

internal view

user’s view

data blocks …

user appends
“d” to the file

27

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

allocator

b c

…

f abcd

internal view

user’s view

d

data blocks …

user appends
“d” to the file

27

Sequential reasoning helps because each
operation needs to do a lot

f’s inode

a

allocator

b c

…

f abcd

internal view

user’s view

allocate for indirect block
and direct block

d

data blocks …

user appends
“d” to the file

28

Careful specification of the transaction system
enables this division of proof

Intuitively, think of this block of code as being atomic 
 
 

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

code

28

Careful specification of the transaction system
enables this division of proof

Intuitively, think of this block of code as being atomic 
 
 

Specification formalizes this by relating code programs to
simpler spec programs

tx := Begin()

v := tx.Read(3)

tx.Write(7, v)

tx.Commit()

code

atomically {

 v ← Read(3);

 Write(7, v); 
}

spec

Design and implementation of DaisyNFS

29

Verifying a high-performance transaction system

Evaluating DaisyNFS

30

GoTxn

 DaisyNFS

30

GoTxn

 DaisyNFS

31

Recall: RENAME needs to update two things
atomically

src dst
?

src dst

32

Write-ahead logging is the core atomicity
primitive

…

fixed-size log data

log install

33

…

fixed-size log data

log
install

in-memory buffer

multiwrite

33

Writes, logging, and installation are all
concurrent

…

fixed-size log data

log
install

in-memory buffer

multiwrite

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

diskEnd

in-memory buffer

disk log

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

l.memLock.Lock()

newBufs := l.memLog.takeFrom(diskEnd)

l.memLock.Unlock()

grab newBufs (orange writes to be written)

diskEnd

in-memory buffer

disk log

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

l.memLock.Lock()

newBufs := l.memLog.takeFrom(diskEnd)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs)

grab newBufs (orange writes to be written)

diskEnd

in-memory buffer

disk log

append newBufs to log

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

l.memLock.Lock()

newBufs := l.memLog.takeFrom(diskEnd)

l.memLock.Unlock()

l.memLock.Lock()

diskEnd += len(newBufs)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs)

grab newBufs (orange writes to be written)

diskEnd

in-memory buffer

disk log

append newBufs to log

record that this batch is durable

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

l.memLock.Lock()

newBufs := l.memLog.takeFrom(diskEnd)

l.memLock.Unlock()

l.memLock.Lock()

diskEnd += len(newBufs)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs)

grab newBufs (orange writes to be written)

diskEnd

in-memory buffer

disk log

append newBufs to log

record that this batch is durable

// wait for a bit

34

Logging happens lock-free in the background

var diskEnd uint64

for {

}

l.memLock.Lock()

newBufs := l.memLog.takeFrom(diskEnd)

l.memLock.Unlock()

l.memLock.Lock()

diskEnd += len(newBufs)

l.memLock.Unlock()

circ.Append(diskEnd, newBufs)

grab newBufs (orange writes to be written)

diskEnd

in-memory buffer

disk log

append newBufs to log

record that this batch is durable

// wait for a bit

after this operation, diskEnd
doesn’t reflect what is durable

35

Proof uses general concurrency techniques to
reason about lock-free region

diskEnd

in-memory buffer

disk log

35

Proof uses general concurrency techniques to
reason about lock-free region

diskEnd

in-memory buffer

disk log

logger knows exactly
diskEnd+2 writes are durable

35

Proof uses general concurrency techniques to
reason about lock-free region

diskEnd

in-memory buffer

disk log

other threads know at least
diskEnd writes are durable

logger knows exactly
diskEnd+2 writes are durable

36

Many other challenges in GoTxn proof

What’s the specification for each internal layer?

Invariants for lock-free installation, concurrency within a
block, two-phase locking

Design and implementation of DaisyNFS

37

Verifying a high-performance transaction system

Evaluating DaisyNFS

38

Most of the proof is for GoTxn

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

38

Most of the proof is for GoTxn

1,600 lines

35,000 lines

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

38

Most of the proof is for GoTxn

1,600 lines

35,000 lines

GoTxn Goose

Proof of GoTxn

model of code

Perennial

Coq

Dafny

 DaisyNFS Proof of DaisyNFS3,200 lines 6,400 lines

39

Limitations

39

Limitations

Only synchronous Commit

Must use transactions from Dafny
limit performance

39

Limitations

Only synchronous Commit

Must use transactions from Dafny

Could still have deadlock

Linking theorem proven on paper

limit performance

limits to proof

40

Proof assumptions

Goose accurately models Go

Disk has atomic 4KB reads and writes

NFS specification is written correctly

We assume that:

41

Evaluate performance using an NFS client

Linux NFS client

mount hostname:/ /mnt
syscalls NFS

NFS server

42

Compare against Linux NFS

 DaisyNFS

Linux NFS server local ext4

vs

*using data=journal

Linux NFS client

mount hostname:/ /mnt
syscalls NFS

43

Performance evaluation setup

Hardware: i3.metal instance 
36 cores at 2.3GHz, NVMe SSD

Benchmarks:

• smallfile: metadata heavy

• largefile: lots of data

• app: git clone + make

44

0.2

0.4

0.6

0.8

1

smallfile largefile app

Linux NFS DaisyNFS

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

44

DaisyNFS gets comparable performance even
with a single client

0.2

0.4

0.6

0.8

1

smallfile largefile app

Linux NFS DaisyNFS

2330 files/s

260 MB/s

0.5 runs/s

Re
la

tiv
e

th
ro

ug
hp

ut

Compare DaisyNFS throughput to Linux,
running on an in-memory disk

45

1400

2800

4200

5600

7000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s

Run smallfile with many clients on an NVMe SSD

45

DaisyNFS can take advantage of multiple clients

1400

2800

4200

5600

7000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s
DaisyNFS

Linux NFS

Run smallfile with many clients on an NVMe SSD

46

Concurrency in the transaction system matters

Seq. GoTxn is DaisyNFS but with locks
around tricky concurrent parts of WAL1400

2800

4200

5600

7000

4 8 12 16 20 24 28 32 36

number of clients

fil
es

/s
DaisyNFS

Linux NFS

Seq. GoTxn

Related work

47

48

Related work

crash safety and concurrency: 
Flashix concurrent file system, ShardStore

crash safety: 
FSCQ, Yggdrasil, VeriBetrFS

concurrency: 
Concurrent GC, CertiKOS, AtomFS

49

Other related work

Goose: VST and CH20 for reasoning about C

Perennial: builds on top of Iris

GoTxn: verified transaction algorithms but not systems

DaisyNFS: builds upon DFSCQ and Yggdrasil

50

Each system is general-purpose

Perennial and Goose can be applied to other storage
systems, languages, and hardware

GoTxn can be used to build other storage systems, in
Dafny or Perennial

51

Summary

New foundations (Perennial and Goose) make verification of
concurrent storage systems possible

GoTxn isolates the difficult reasoning so proofs on top use
sequential reasoning

Verified DaisyNFS, a concurrent, crash-safe file system with
performance comparable to Linux

Acknowledgments

52

53

Frans Kaashoek Joe TassarottiNickolai Zeldovich

54

55

Neha, Austin, Srivatsa, Julian,
Jelle, Haogang, Shoumik, Cody,
Frank, Amy, Malte, Joe, David,
Jon

Atalay, Anish, Derek, Jonathan,
Akshay, Lily, Josh, Inho, Zain,
Ariel, Kevin, Alex, Upamanyu,
Ralf, Yun-Sheng

56

Mentees

Daniel Ziegler

Alex Konradi

Lef Ionnadis

Sydney Gibson

Sharon Lin

57

MIT PL

Sara Achour, Clément Pit-Claudel, Ben Sherman, 
Sam Gruetter, Thomas Bourgeat, and many others

58

CSC board games

especially Leilani, Nathan, Max, Jon, and Ajay

58

CSC board games

especially Leilani, Nathan, Max, Jon, and Ajay

59

60

250 Elm

61

Many others

